Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hsp70 and Hsp90 chaperones and their regulatory cochaperones are critical for maintaining protein homeostasis. Glucose-regulated protein 94 (GRP94), the sole Hsp90 chaperone in the secretory pathway of mammalian cells, is essential for the maturation of important secretory and transmembrane proteins. Without the requirement of cochaperones, the Hsp70 protein BiP controls regulatory conformational changes of GRP94, the structural basis of which has remained elusive. Here we biochemically and structurally characterize the formation of a BiP-GRP94 chaperone complex and its transition to a conformation expected to support the loading of substrate proteins from BiP onto GRP94. BiP initially binds to the open GRP94 dimer through an interaction interface that is conserved among Hsp70 and Hsp90 paralogs. Subsequently, binding of a second BiP protein stabilizes a semiclosed GRP94 dimer, thereby advancing the chaperone cycle. Our findings highlight a fundamental mechanism of direct Hsp70-Hsp90 cooperation, independent of cochaperones.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-025-01619-0DOI Listing

Publication Analysis

Top Keywords

bip-grp94 chaperone
8
chaperone complex
8
hsp70 hsp90
8
grp94 dimer
8
grp94
5
conformational plasticity
4
plasticity bip-grp94
4
chaperone
4
complex hsp70
4
hsp90 chaperones
4

Similar Publications

Conformational plasticity of a BiP-GRP94 chaperone complex.

Nat Struct Mol Biol

July 2025

Department of Mechanistic Cell Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.

Hsp70 and Hsp90 chaperones and their regulatory cochaperones are critical for maintaining protein homeostasis. Glucose-regulated protein 94 (GRP94), the sole Hsp90 chaperone in the secretory pathway of mammalian cells, is essential for the maturation of important secretory and transmembrane proteins. Without the requirement of cochaperones, the Hsp70 protein BiP controls regulatory conformational changes of GRP94, the structural basis of which has remained elusive.

View Article and Find Full Text PDF

The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) to maintain the homeostasis of the ER. The UPR consists of the IRE1, PERK and ATF6 pathways in vertebrates. Knockout of the IRE1 and PERK pathways causes defects in liver and pancreatic β cells, respectively, in mice, whereas knockout of the ATF6 pathway causes very early embryonic lethality in mice and medaka fish, a vertebrate model organism.

View Article and Find Full Text PDF

Hsp90 chaperones are a long-standing cancer drug target with numerous ATP-competitive inhibitors in clinical trials. Client proteins are transferred from Hsp70 to Hsp90 in a stepwise process of client delivery, loading, and trapping, but little is known about how inhibitors influence these steps. By examining the ER-resident BiP/Grp94 system (Hsp70/Hsp90 paralogs), we discover that some inhibitors allow BiP to push Grp94 into the client loading conformation, whereas other inhibitors block this conformational change and destabilize a BiP/client/Grp94 ternary complex.

View Article and Find Full Text PDF

Hsp70 and Hsp90 chaperones provide protein quality control to the cytoplasm, endoplasmic reticulum (ER), and mitochondria. Hsp90 activity is often enhanced by cochaperones that drive conformational changes needed for ATP-dependent closure and capture of client proteins. Hsp90 activity is also enhanced when working with Hsp70, but, in this case, the underlying mechanistic explanation is poorly understood.

View Article and Find Full Text PDF

Hsp70 and Hsp90 chaperones are critical for protein quality control in the cytosol, whereas organelle-specific Hsp70/Hsp90 paralogs provide similar protection for mitochondria and the endoplasmic reticulum (ER). Cytosolic Hsp70/Hsp90 can operate sequentially with Hsp90 selectively associating with Hsp70 after Hsp70 is bound to a client protein. This observation has long suggested that Hsp90 could have a preference for interacting with clients at their later stages of folding.

View Article and Find Full Text PDF