98%
921
2 minutes
20
Spatiotemporal gene expression is fundamental to cellular identity and function, ensuring proper development and tissue homeostasis. Histone modifications, such as H3K4 methylation (associated with active transcription) and H3K27 methylation (linked to repression), act as molecular switches that fine-tune gene expression. However, it remains largely unclear whether and how the histone modifying enzymes are regulated during normal development. In Drosophila, Utx, the sole H3K27 demethylase, plays a crucial role in removing di- and trimethylation marks on H3K27 across the genome. Here, we provide the first evidence that Utx transcription is dynamically regulated, with its regulatory elements exhibiting distinct temporal and spatial activity throughout development. Despite this variability at the transcriptional level, Utx protein is ubiquitously expressed and relatively stable. We found that the regulatory elements of Utx are highly active during embryogenesis but become largely inactivated in wing, eye and leg progenitor tissues during larval and pupal stages. Intriguingly, these regulatory elements are persistently active in the brain into adulthood. Disrupting this dynamic regulation activates a surveillance mechanism that limits excess Utx from translocating into the nucleus, thereby ensuring optimal nuclear protein levels. Moreover, while the Jumonji C (JmjC) demethylase activity of Utx is essential for Drosophila viability, we also discovered that the integrity of this domain is crucial for Utx protein expression. Our findings uncover a previously unrecognized aspect of Utx regulation, highlighting how precise control of its expression and localization safeguards developmental processes and maintains epigenetic stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2025.104360 | DOI Listing |
Theor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFPlant Sci
September 2025
Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:
Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.
View Article and Find Full Text PDFPlant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Saarland University, Department of Pharmacy, Saarbrücken, Germany.
Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in hosts.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou 510006, China.
The 5' untranslated region (5'UTR) plays a crucial regulatory role in messenger RNA (mRNA), with modified 5'UTRs extensively utilized in vaccine production, gene therapy, etc. Nevertheless, manually optimizing 5'UTRs may encounter difficulties in balancing the effects of various cis-elements. Consequently, multiple 5'UTR libraries have been created, and machine learning models have been employed to analyze and predict translation efficiency (TE) and protein expression, providing insights into critical regulatory features.
View Article and Find Full Text PDF