Evaluation of drug-drug interaction potentials between JP-1366 and celecoxib using physiologically based pharmacokinetic modeling.

Transl Clin Pharmacol

Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zastaprazan (JP-1366) is a new potassium-competitive acid blocker being developed for treating gastrointestinal reflux disease. It is an orally administered small molecule that inhibits gastric H+ and K+-ATPases differently from proton pump inhibitors, which act quickly and have dose-dependent effects on acid secretion. Celecoxib, a selective cyclooxygenase 2 inhibitor, will likely be used with zastaprazan in clinical settings and trials. The objective of current physiologically based pharmacokinetic (PBPK) modeling study is to predict drug-drug interaction (DDI) risk between zastaprazan (perpetrator) and celecoxib (victim). A human PBPK model for zastaprazan was built using experimental physicochemical properties and predictions. The model was optimized with clinical pharmacokinetic (PK) data from a phase 1 study (Protocol No. JP-1366-105). The PBPK model for celecoxib was constructed using the data from previous studies and predictions. The final PBPK model encompassing zastaprazan and celecoxib was used to quantitatively predicted DDI risks in humans. The final PBPK models accurately predicted zastaprazan's PK profiles after single dose in human, and it also well predicted plasma celecoxib concentrations over time. At doses of 20 mg of zastaprazan citrate (JAQBO tablet) and 200 mg of celecoxib, multiple oral doses of zastaprazan every 24 hours for 7 days did not increase celecoxib's area under the curve (AUC) and maximum plasma concentration (C), with ratios of 1 in both AUC and C, indicating no effect of zastaprazan on celecoxib's PK. The PBPK modeling approach provides scientific predictions of DDIs between zastaprazan and celecoxib, guiding future clinical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12242391PMC
http://dx.doi.org/10.12793/tcp.2025.33.e10DOI Listing

Publication Analysis

Top Keywords

pbpk model
12
zastaprazan
9
drug-drug interaction
8
celecoxib
8
physiologically based
8
based pharmacokinetic
8
pbpk modeling
8
final pbpk
8
zastaprazan celecoxib
8
doses zastaprazan
8

Similar Publications

Digital twins in nuclear medicine: A proposition of a modular pipeline for dosimetry protocol optimization in molecular radiotherapy.

Comput Struct Biotechnol J

August 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.

View Article and Find Full Text PDF

The development of alternative methods to animal testing has gained momentum over the years, including the rapid growth of methods, which are faster and more cost-effective. A large number of tools have been published, focusing on Read-Across, (quantitative) Structure-Activity Relationship ((Q)SAR) models, and Physiologically Based Pharmacokinetic (PBPK) models. All of these methods play a crucial role in the risk assessment for cosmetics.

View Article and Find Full Text PDF

Topiramate is increasingly used in the treatment of epilepsy during pregnancy. However, its plasma concentration evidently decreases during pregnancy, which may reduce its efficacy. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of topiramate to simulate maternal and fetal pharmacokinetic changes across different trimesters and to propose dose adjustments.

View Article and Find Full Text PDF

Recent Advances in Bioanalytical Methods for Quantification and Pharmacokinetic Analyses of Antibody-Drug Conjugates.

AAPS J

September 2025

Clinical Pharmacology Laboratory, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 5A03, Bethesda, Maryland, 20892, USA.

Antibody-drug conjugates (ADCs) represent a rapidly expanding class of therapeutics, uniquely combining the specificity of monoclonal antibodies with the potency of cytotoxic small-molecule payloads. Due to their inherent structural complexity and heterogeneous composition, accurate characterization and quantification of ADCs pose significant bioanalytical challenges. This review discusses recent advancements in bioanalytical methodologies, including ligand binding assays (LBAs), liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches, and emerging hybrid LBA-LC-MS/MS platforms.

View Article and Find Full Text PDF

Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level.

View Article and Find Full Text PDF