98%
921
2 minutes
20
Background And Objectives: Posttreatment tooth movement, or relapse, is a common challenge in orthodontics. Bonded retainers are widely used to preserve corrected tooth positions. This study evaluates the mechanical properties of different lingual retainer wires combined with composite bonding materials.
Materials And Method: Ninety human incisors were divided into three groups, each using different retainer wires: Retainium, Bond-A-Braid, and Custom-Made Ligature wires, bonded with Transbond LR composite. Shear bond strength (SBS), flexural properties, and load-deflection rates (LDR) were analyzed through a universal testing machine (UTM) debonding, tensile tests, and three-point bend tests. Statistical comparisons were made using Kruskal-Wallis and ANOVA tests.
Results: Group III showed the highest SBS, while Custom-Made Ligature wires exhibited superior stiffness and LDR.
Conclusion: Custom-Made Ligature wires offer better mechanical properties, and Group III demonstrated the strongest bond strength, highlighting the importance of material selection in orthodontic retention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12244874 | PMC |
http://dx.doi.org/10.4103/jpbs.jpbs_51_25 | DOI Listing |
Am J Orthod Dentofacial Orthop
September 2025
Department of Orthodontics, Faculty of Dentistry, Phenikaa University, Duong Noi, Hanoi, Vietnam.
Introduction: This study investigated the effect of sandblasting time and primer type on the shear bond strength of composite attachments to full-contour zirconia crowns.
Methods: A total of 108 zirconia specimens were fabricated and divided into 9 groups (n = 12) according to sandblasting time (10, 30, and 60 seconds) and primer type (silane, 10-methacryloyloxydecyl dihydrogen phosphate [MDP], universal). After sandblasting with 110-μm alumina particles, specimens were primed, and attachments were bonded using a packable composite.
Small
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Quasi-1D van der Waals materials have emerged as promising candidates for flexible electronic and thermoelectric applications due to their intrinsic anisotropy, narrow band gaps, and mechanical flexibility. Herein, MXSe (M = Nb, Ta, X = Pd, Pt) nanowires are studied to understand the bonding-directed growth mechanism. Bond valence sums and binding energy analyses reveal that weak X2-Se2 interactions perpendicular to the c-axis facilitate anisotropic growth.
View Article and Find Full Text PDFChem Sci
September 2025
Institut für Organische Chemie, Universitat Würzburg 97074 Würzburg Germany
The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDF