98%
921
2 minutes
20
Herein, a peak ZT value of ≈2 at 625 K and an average ZT of 1.46 are achieved in the AgSbTe system through band engineering and multiscale phonon scattering. This demonstrates that Ga doping achieves band convergence and an additional impurity level between the valence and conduction bands. In contrast, I and S doping contribute profound band flattening. The collective effect of band engineering yields an improved Seebeck coefficient (S) and power factor (PF). The band manipulation strategy facilitated the attainment of peak PF of 17.9 µW cm K at 625 K, and an excellent average power factor (PF) of 15.12 µW cm K is achieved for AgSbGaTeSI sample. In the meanwhile, the combined presence of coherent and incoherent nanoprecipitates introduces strong phonon scattering in AgSbTe matrix, leading to a significantly suppressed lattice thermal conductivity. The lowest lattice thermal conductivity as low as 0.31 W mK is achieved in AgSbGaTeSI sample. The vast increase of peak ZT and average ZT promotes AgSbTe as a promising candidate for widespread applications for waste heat recovery and power generation near room-temperature range (300-625 K).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202506235 | DOI Listing |
ACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFDiscov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFExp Brain Res
September 2025
Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.
View Article and Find Full Text PDFNanoscale
September 2025
St. Petersburg State University, 199034 St. Petersburg, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.
View Article and Find Full Text PDF