Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence and machine learning models have been developed to engineer antibodies for specific recognition of antigens. These approaches, however, often focus on the antibody complementarity-determining region (CDR) whilst ignoring the immunoglobulin framework (FW), which provides structural rigidity and support for the flexible CDR loops. Here we present an integrated computational-experimental workflow, combining static structure analyses, molecular dynamics simulations and physicochemical and functional assays to generate rational designs of FW mutations for modulating antibody stability and activity. We first showed that recent antibody-specific language models lacked insights in FW mutagenesis, in comparison to approaches that use antibody structure information. Using the widely used breast cancer therapeutic trastuzumab as a use case, we designed stabilizing mutants which were distal to the CDR and preserved the antibody's functionality to engage its cognate antigen (HER2) and induce antibody-dependent cellular cytotoxicity. Interestingly, guided by local backbone motions predicted using molecular dynamics simulations, we designed a FW mutation on the trastuzumab light chain that retained antigen-binding effects, but lost Fab-mediated and Fc-mediated effector functions. This highlighted the effects of FW on immunological functions engendered in distal areas of the antibody, and the importance of considering attributes other than binding affinity when assessing antibody function. Our approach incorporates interdomain dynamics and distal effects between FW and the Fc domains, expands the scope of antibody engineering beyond the CDR, and underscores the importance of a holistic perspective that considers the entire antibody structure in optimizing antibody stability, developability and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269682PMC
http://dx.doi.org/10.1080/19420862.2025.2532117DOI Listing

Publication Analysis

Top Keywords

antibody stability
12
rational designs
8
antibody
8
molecular dynamics
8
dynamics simulations
8
antibody structure
8
tuning antibody
4
stability function
4
function rational
4
designs framework
4

Similar Publications

We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.

View Article and Find Full Text PDF

When is A Kidney Biopsy Indicated During the Treatment of Brain Cancer?

Eur J Case Rep Intern Med

August 2025

Nephrology Department, Unidade Local de Saúde de Braga, Braga, Portugal.

Introduction: Bevacizumab is a monoclonal antibody that targets vascular endothelial growth factor (VEGF) and is widely used in oncology for its anti-angiogenic properties. However, VEGF inhibition may result in significant nephrotoxicity, including thrombotic microangiopathy (TMA). While systemic TMA is well-described, isolated renal-limited TMA remains under recognised.

View Article and Find Full Text PDF

Introduction: The Zika virus (ZIKV) envelope (E) protein is critical for viral replication and host interactions. Although glycosylation of the E protein is known to influence viral infectivity and immune evasion, the specific functional roles of E protein glycosylation in ZIKV infectivity in mosquito cells remain unclear.

Methods: In this study, we generated a deglycosylation mutant ZIKV with a T156I substitution in the E protein and investigated its effects on viral replication and viral-host interactions in mosquito C6/36 cells.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.

View Article and Find Full Text PDF