98%
921
2 minutes
20
Isothermal microcalorimetry (IMC) is a promising tool for diagnosing periprosthetic joint infection (PJI), based on real-time measurement of growth-related heat production of pathogens, and faster than conventional microbial cultures. However, the feasibility of identifying specific pathogens in clinical samples using IMC has yet to be proven. This study implements machine learning and transfer learning convolutional neural network (CNN) models to detect and identify pathogens causing PJI, using IMC data alone. IMC data were obtained from synovial fluid samples, including 174 aseptic samples and 239 PJI samples containing five different bacterial strains. XGBoost, multi-layer perceptron, support vector machine, random forest, and three transfer learning CNN models were implemented to detect PJI and identify five bacterial strains in PJI samples. The binary XGBoost classifier yielded a 100% accuracy in PJI detection, whereas the multiclass XGBoost classifier and the combined transfer learning CNN classifier reached an overall accuracy of 90.3% and 91.5%, respectively, in PJI identification, with biological significance of extracted features in the XGBoost model facilitating its interpretability and usage in clinical practice. The strain with the lowest recall (83.3%) was PA, whereas SE was the strain with the lowest precision (78.9%). The results demonstrate the feasibility of automatic detection and identification of pathogens causing PJI using their IMC growth patterns and machine learning models. This adds a critical missing feature to IMC, contributing to accelerating the diagnosis of PJI and the selection of antibiotic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.70024 | DOI Listing |
Int J Surg
September 2025
Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.
Mol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFMol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFDrugs Aging
September 2025
Dalla Lana School of Public Health, University of Toronto, V1 06, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.
View Article and Find Full Text PDF