Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bone marrow stimulation is a treatment for articular cartilage injuries that promotes cartilage repair by inducing the migration and accumulation of mesenchymal stem cells (MSCs), but often results in fibrocartilage with limited durability. This study aimed to investigate the effect of hypoxic conditions on cartilage repair using a rat osteochondral defect model. Osteochondral defects (1.0 mm in diameter) were created in the femoral trochlear groove, and rats were exposed to hypoxic conditions (12% O) for 4 weeks postoperatively. Histological analysis was performed, and protein expression of hypoxia-inducible factor-1α (HIF-1α) and SRY-box transcription factor 9 (SOX9) in the repair tissue was evaluated after 1 week. As a result, after 1 week, protein expression of HIF-1α and SOX9 in the Hypoxia group was significantly increased compared to the Normoxia group. After 4 weeks, the Hypoxia group exhibited a hyaline cartilage-like tissue structure with a significantly lower Modified Wakitani score compared to the Normoxia group. Furthermore, after 4 weeks, the inhibition of HIF-1α suppressed cartilage repair. These findings suggest that hypoxic conditions promote SOX9 expression via HIF-1α during the early phase of MSC chondrogenic differentiation and promote the formation of hyaline cartilage-like repair tissue. In conclusion, bone marrow stimulation under hypoxic conditions may enhance the repair effect on articular cartilage injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250133PMC
http://dx.doi.org/10.3390/ijms26136370DOI Listing

Publication Analysis

Top Keywords

hypoxic conditions
20
cartilage repair
16
conditions promote
8
repair rat
8
osteochondral defect
8
defect model
8
hypoxia-inducible factor-1α
8
bone marrow
8
marrow stimulation
8
articular cartilage
8

Similar Publications

Background: Belzutifan is a HIF-2ɑ inhibitor approved for the treatment of tumors in von Hippel-Lindau (VHL) syndrome and sporadic metastatic clear cell renal cell carcinoma (spRCC) in the refractory setting. The efficacy and side effects of belzutifan are well-documented from clinical trials, however, real-world data examining the incidence and management of adverse events (AEs) are lacking. Our study aims to describe the AE profiles of belzutifan in spRCC and VHL populations.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC), a novel neuroprotective therapy, has broad potential for reducing the occurrence and recurrence of cerebrovascular events, yet its mechanisms are not incompletely understood. The aim of this study is to investigate whether RIC alleviates apoptosis, inflammation, and reperfusion injury in rat models of ischemic stroke by regulating the Elabela (ELA)-apelin-Apelin receptor (APJ) system.

Methods: We established a rat model of middle cerebral artery occlusion (MCAO) with ischemia-reperfusion injury, and RIC was administered twice daily for 3 days post-MCAO.

View Article and Find Full Text PDF

Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.

View Article and Find Full Text PDF

The utility of bio-reductive prodrugs in cancer research has emerged as an attractive strategy. We synthesized and characterized a couple of cobalt(iii)-Schiff base complexes of general molecular formula Co(L)(L) and Co(L)(dox) , where L and L are ,-(ethane-1,2-diyl)bis(1-(pyridine-2-yl)methanimine) and 1-phenyl-1,3-butanedione, and dox = doxorubicin, as bio-reductive prodrugs. UV-vis and fluorescence spectroscopic assays confirmed the reductive release of doxorubicin from the complex in a GSH-dependent manner under physiological conditions, showing its potential for drug release.

View Article and Find Full Text PDF

Hypoxia promotes pancreatic adenocarcinoma progression by stabilizing ID1 via TRIM21 suppression.

Front Oncol

August 2025

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.

Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.

Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.

View Article and Find Full Text PDF