Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials.

Materials (Basel)

Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional film materials with unique atomic structures and electronic operation modes have demonstrated amazing application potential and value in the field of high technology. Among the various methods for preparing 2D film materials, PLD technology has become the preferred technology for rapid and green preparation of high-quality, complex structured 2D film materials due to its features such as maintaining the excellent stoichiometric ratio of the target, strong process flexibility, and non-polluting environment. Therefore, this paper discusses the exciting topic of PLD technology in the preparation and application of 2D film materials. Based on a systematic exposition of its basic principles and influencing factors, it provides a detailed overview of the current application status of PLD technology in the preparation of various 2D film materials such as carbides, sulfides, oxides, nitrides, and perovskites. Meanwhile, the advantages and disadvantages of PLD technology in the preparation of 2D film materials were also positively summarized, and the challenges and emerging strategies it faces in the future preparation of 2D film materials were cautiously discussed. This provides practical suggestions and reflections for the sustainable development of PLD technology in the fields of basic research, performance regulation, device development, and application of 2D film materials preparation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251302PMC
http://dx.doi.org/10.3390/ma18132999DOI Listing

Publication Analysis

Top Keywords

film materials
36
pld technology
24
technology preparation
16
preparation film
12
film
9
materials
9
technology
8
two-dimensional film
8
application film
8
preparation
7

Similar Publications

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.

View Article and Find Full Text PDF

A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.

View Article and Find Full Text PDF

Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF