Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study develops an algorithm and a system for steel straightness detection, which combines object detection, edge detection, line detection, clustering, stitching, and bending recognition. The algorithm detects the contour of U-shaped steel bars with widths of 100 mm, named U100, or 150 mm, named U150, and lengths of 8, 10, 12 m. The algorithm uses object detection to extract the center point of the U-shaped bottom as a reference point and line detection to extract lines in the contour. The algorithm selects one-stage or two-stage edge detection based on the light source. Two-stage edge detection enhances the contour features when the light source is insufficient. After contour detection, some parts of the contour disappear due to the light source. The algorithm stitches all lines with an angle difference within ∆θ degrees into one straight line based on the angle of the longest line. If the length of exceeds the threshold value MLL, the steel bar is straight; otherwise, it is bent. ∆θ and MLL are used to set the acceptable bending degree. The experiment results show that the algorithm detects 123,128 steel bars in 193 h with an average accuracy of 99.64% for straight steel and an average recall of 95.70% for bent steel. The contribution of this study is the development of a real-time algorithm and its corresponding system for steel straightness determination in a steel factory, ensuring accurate and efficient assessment of steel quality in an industrial setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252192PMC
http://dx.doi.org/10.3390/s25133972DOI Listing

Publication Analysis

Top Keywords

edge detection
12
light source
12
detection
10
steel
10
u-shaped steel
8
steel bar
8
system steel
8
steel straightness
8
object detection
8
algorithm detects
8

Similar Publications

Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.

View Article and Find Full Text PDF

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Emerging biosensor technologies for obstructive sleep apnea: A comprehensive overview and future prospects.

Prog Mol Biol Transl Sci

September 2025

Division of Sleep Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University, Clevelan

Obstructive sleep apnea (OSA) is a pervasive disorder characterized by recurrent airway obstructions during sleep. OSA carries serious health risks, such as cardiovascular and cognitive impairments, and imposes a significant economic burden. This chapter provides a comprehensive overview of various biosensors currently employed for OSA detection, including in-lab polysomnography and flow-based home sleep apnea testing.

View Article and Find Full Text PDF

Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for rapidly and reproducibly assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF