98%
921
2 minutes
20
This study used the Discrete Element Method (DEM) coupled with the Moving Particle Semi-implicit (MPS) method to investigate the process of drying in the centrifugal unit of a pelletizing system in polymer processing. The effects of various flight angles (10°, 45°, and 70°) and rotor speeds (1280, 1600, and 1920 rpm) on drying efficiency, polymer pellet transport, polymer pellet accumulation, and power consumption were examined. The results showed that the flight angle significantly influenced drying performance. At 1600 rpm, the 10° flight angle configuration required the least power (10.94 kW) but resulted in inefficient water separation, which led to an increase in water droplets (i.e., higher moisture content) in the upper part of the centrifugal unit and near the outlet. With a 70° flight angle, water removal was most effective, but polymer pellet transport efficiency was lower due to centrifugal forces becoming dominant. A 45° flight angle provided the best balance between drying efficiency and power consumption, requiring 16.42 kW while achieving the most efficient polymer pellet transport. Rotor speed also played a crucial role: lower speeds enhanced water removal and reduced power demand but limited throughput, whereas higher speeds facilitated centrifugal separation at the cost of increased power consumption. The optimal combination of the rotor speed and flight angle was found to be 45° at 1280 rpm, which offered an effective trade-off between drying performance and power efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252033 | PMC |
http://dx.doi.org/10.3390/polym17131829 | DOI Listing |
Ann Anat
September 2025
Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, Greece; "VARIANTIS" Research Laboratory, Department of Clinical Anatomy, Mazovian Academy in Plock, Poland.
Background: The vertebral artery (VA) undergoes a critical anatomical transition as it pierces the dura mater at the craniocervical junction. Precise knowledge of dural penetration patterns and angulation is essential for diagnostic imaging, neurosurgical planning, and minimizing iatrogenic risk in posterior fossa procedures.
Methods: This retrospective imaging study evaluated 100 adult patients who underwent 1.
J Mater Chem B
September 2025
School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
Surface modification of poly(ε-caprolactone) (PCL) to facilitate interactions with high pI proteins is a strategy used to enhance 3D PCL scaffolds for tissue engineering applications. The approach of the current study was to firstly optimise the surface modification on 2D films and then apply to 3D scaffolds. Melt-pressed PCL films were grafted with 2-aminoethyl methacrylate gamma radiation induced grafting to introduce amine functional groups to the substrate surfaces.
View Article and Find Full Text PDFScand J Med Sci Sports
September 2025
C3S Laboratory, Université de Franche-Comté, Besançon, France.
During drop landings, shortly after ground contact, spinal excitability is decreased. This decrease, as measured by soleus H-reflex, has been presumed, but not proven, to originate from presynaptic inhibition, facilitated by the descending drive from supraspinal centers. Therefore, the aim of this study was to examine presynaptic inhibition during the flight and landing phases of drop landings.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
Background: Intracranial aneurysms, particularly saccular types, are localized dilations of cerebral vessels prone to rupture, leading to life-threatening complications such as subarachnoid hemorrhage.
Purpose: This study aimed to characterize the localized hemodynamic environment within the aneurysm dome and evaluate how spatial interactions among key flow parameters contribute to rupture risk, using a synergistic analytical framework.
Methods: We applied the targeted evaluation of synergistic links in aneurysms (TESLA) framework to analyze 18 intracranial aneurysms from 15 patients.
ChemSusChem
September 2025
TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
Photocatalytic water splitting enables the generation of green hydrogen (H). In this framework, water and sunlight are the sustainable sources. Photocatalyst-loaded hydrogel materials have already shown their potential as a water storage and catalyst host matrix for H production.
View Article and Find Full Text PDF