Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To unlock the potential of molecular engineering for practical quantum sensing and computing, it is essential to create and control pure magnetic states in molecular systems. Singlet fission (SF) in organic materials offers a promising approach by generating pairs of triplet excited states from photoexcited singlets. In this work, we investigate SF in a polymer with strategically positioned tetracene pendant groups along a polynorbornene backbone and its oligomeric counterparts, facilitating intrapolymer through-space coupling. Using continuous-wave and pulsed time-resolved electron paramagnetic resonance (EPR) spectroscopy, we elucidate the spin dynamics and identify key intermediates, including the quintet state, that emerge during SF. Our findings reveal that exciton translational motion along the pendant groups enhances the dissociation of triplet pairs, with oligomer length playing a critical role in modulating spin state interconversion and exciton transport. Our results provide key insights into the SF mechanism in polymeric materials and highlight the role of oligomer length in modulating spin state interconversion and exciton transport. This work advances our understanding of SF in polymers, paving the way for their application in quantum information science and energy conversion technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c07136DOI Listing

Publication Analysis

Top Keywords

singlet fission
8
pendant groups
8
oligomer length
8
modulating spin
8
spin state
8
state interconversion
8
interconversion exciton
8
exciton transport
8
elucidating quintet-state
4
quintet-state dynamics
4

Similar Publications

The Lowest Excited State of Heptacenes Is Dark.

J Phys Chem Lett

September 2025

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

Understanding the electronic structure of polycyclic aromatic compounds is of fundamental importance for their potential applications. The optoelectronic properties of shorter acenes such as tetracene and pentacene have been extensively studied with regard to excitation, emission, and nonlinear effects such as singlet fission. The longer homologues present a unique challenge due to their low stability both in the solid state and in solution.

View Article and Find Full Text PDF

Optoelectronic Properties of Tetracyanoquinodimethane (TCNQ) Related Compounds for Applications to OSCs and OLEDs: A Theoretical Study.

J Phys Chem A

September 2025

Department of Chemistry, Bhatter College, Dantan, P.O. Dantan, Paschim Medinipur, Dantan 721426, India.

Tetracyanoquinodimethane (TCNQ) and related compounds are thoroughly investigated as potential innovative organic semiconductors and singlet fission (SF) materials. The TDDFT method with the PBE0/Def2-TZVP level is used to determine the geometrical structures, atomic dipole corrected Hirshfeld (ADCH) charge, population, dipole moment (μ), band gaps, different density of states (DOSs), excitation energies, hole-(λ) and electron-(λ) reorganization energies, SF properties, absorption-emission spectra, transition density matrix (TDM), electron localization function (ELF) of these molecules, and open circuit voltage (), fill factor (FF), and power conversion efficiency (PCE) of possible optoelectronic devices. At the CAM-B3LYP/6-311G** level, we examine the ground and excited state characteristics of 44 modeled TCNQ-related molecules.

View Article and Find Full Text PDF

Robust Singlet Fission in Disordered Thin Films of a Tethered Dipyrrolonaphthyridinedione Cyclophane-Like Skeleton.

J Phys Chem Lett

September 2025

Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China.

The practical applications of singlet fission (SF) are currently restricted by the limited number of SF-active materials and the stringent requirement of intermolecular interactions. It is still imperative but challenging work to develop an efficient SF system weakly dependent on molecular orientation and film morphology. Here, we elaborately designed a tethered cyclophane-like skeleton and constructed a disordered aggregation system.

View Article and Find Full Text PDF

Excimers are important excited-state homodimeric complexes affecting excited-state processes such as symmetry-breaking charge separation (SB-CS) and singlet fission (SF). Their formation is influenced by factors such as the solvent environment, spatial orientation, and distance between the chromophores. Our study uses MP2 and ADC(2) methods to explore excimer formation in a specific conformer of covalently linked azulene-fused anthracenes, out of two conformers, and .

View Article and Find Full Text PDF

Interplay between Through-Space and Through-Bond Electronic Coupling in Singlet Fission.

J Am Chem Soc

September 2025

Department of Chemistry and Pharmacy, Profile Center FAU Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.

Singlet fission (SF) is a spin-allowed photophysical process that generates two triplet excited states for one absorbed photon. It therefore has the potential to boost solar cell efficiencies beyond the 33% detailed balance limit. A better understanding of through-space and through-bond electronic coupling in SF, and their interplay, is essential for practical applications of SF materials.

View Article and Find Full Text PDF