98%
921
2 minutes
20
The study aims to enhance the design process of tissue-engineered implants by evaluating the effects of scaffold reinforcement and cultivation conditions on extracellular matrix (ECM) development. The research investigates the hypothesis that mechanical stress drives ECM production and alignment. Furthermore, we have explored the potential of an growth model to complement findings for accelerated development processes. The study employed fiber-reinforced and nonreinforced scaffolds fabricated using warp-knitted textiles and fibrin gel. Myofibroblasts embedded in the scaffolds were cultivated under static and dynamic conditions. ECM development was evaluated through mechanical testing, hydroxyproline assays, and microscopy, while an growth model was used to predict ECM behavior. Static cultivation resulted in significant ECM development in both reinforced and nonreinforced samples, with nonreinforced scaffolds showing higher collagen content and alignment along the load direction. In contrast, dynamic cultivation inhibited ECM formation, potentially due to cross-contraction and washout effects. Fiber-reinforced scaffolds exhibited higher elasticity and sustained stress across cycles without structural damage. The model provided valuable insights but overestimated mechanical properties due to limited validation data. Reinforced scaffolds maintained geometry and elasticity, suggesting suitability for load-bearing applications. Nonreinforced scaffolds facilitated higher ECM production but were prone to structural damage. Dynamic cultivation requires optimization, such as prestatic cultivation, to support ECM development. The combined and approach offers a promising framework for scaffold design, reducing the reliance on iterative experimental processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/19373341251359109 | DOI Listing |
Sci Transl Med
September 2025
Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.
Skin scars remain a substantial clinical challenge because of their impact on appearance and psychological well-being. Lysyl oxidases catalyze collagen cross-linking, a key factor in scar development. Here, we report a randomized, double-blind, placebo-controlled phase 1 study to assess the safety and tolerability of PXS-6302, a topical pan-lysyl oxidase inhibitor, in treating mature scars (ACTRN12621001545853).
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
During embryonic development, neural crest-derived melanoblasts, which are precursors of pigment-producing melanocytes, disperse throughout the skin by long-range cell migration that requires adhesion to the ECM. Members of the integrin family of cell-ECM adhesion receptors are thought to contribute to melanocyte migration . However, due to the functional redundancy between different integrin heterodimers, the precise role of integrins in melanoblast migration, as well as the mechanisms that regulate them in this process, especially in contexts, remain poorly understood.
View Article and Find Full Text PDFFront Microbiol
August 2025
College of Life Sciences, Hebei University, Baoding, China.
Introduction: The Zika virus (ZIKV) envelope (E) protein is critical for viral replication and host interactions. Although glycosylation of the E protein is known to influence viral infectivity and immune evasion, the specific functional roles of E protein glycosylation in ZIKV infectivity in mosquito cells remain unclear.
Methods: In this study, we generated a deglycosylation mutant ZIKV with a T156I substitution in the E protein and investigated its effects on viral replication and viral-host interactions in mosquito C6/36 cells.
ACS Biomater Sci Eng
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.
View Article and Find Full Text PDFInquiry
September 2025
Duke University, Durham, NC, USA.
Although critical to enacting change, effectively communicating clinical and public health research results remains a challenge. In a webinar that occurred on December 7, 2023, a group of clinical and public health researchers and communications specialists convened to share their experiences using plain language materials to communicate research results. Herein, they provide practical guidance and case examples of lay summaries, infographics, data dashboards, and zines, along with challenges and potential solutions.
View Article and Find Full Text PDF