Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil erosion is a critical environmental issue in the Brahmaputra River Basin, threatening agricultural productivity, water resources, and ecological balance. This study employs the revised universal soil loss equation (RUSLE) alongside remote sensing, geographic information systems (GIS), and advanced machine learning models like random forest (RF) and gradient boosting (GB) to analyze soil erosion patterns from 2005 to 2024. The analysis revealed that average annual soil loss increased from 15.8 tons/ha/year in 2005 to 25.4 tons/ha/year in 2024, marking a 60.76% rise over two decades. Peak erosion rates were observed in 2020, with localized hotspots recording up to 32,130 tons/ha/year. Spatial analysis from 2005 to 2024 indicated substantial variability, with soil loss values ranging from - 7.024 to 9034 tons/ha in 2005. Topographic influence, quantified using the LS factor, revealed that 47.2% of the basin area has slopes steeper than 16°, significantly contributing to elevated erosion risk. The rainfall erosivity (R-factor) fluctuated throughout the period, peaking at 2305.73 MJ mm/ha h year in 2015 but declining to 799.21 MJ mm/ha h year by 2024, indicating a temporal shift in rainfall patterns. Vegetation cover improvements during this time reduced the mean C-factor from 0.52 to 0.34, though 13.8% of the basin (approximately 3.05 million ha) still falls under high to very high erosion risk zones. RF model predictions achieved an R of 0.915 and RMSE of 4.82, while GB attained an R of 0.952 with RMSE of 3.97, indicating superior predictive performance. These findings underscore the urgent need for targeted soil conservation measures, afforestation programs, and sustainable watershed management. The integration of AI-driven modeling with remote sensing and GIS provides a robust framework for long-term soil erosion monitoring, enabling informed decision-making for climate adaptation in the region.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-025-14314-wDOI Listing

Publication Analysis

Top Keywords

soil erosion
16
erosion risk
12
soil loss
12
brahmaputra river
8
river basin
8
advanced machine
8
machine learning
8
remote sensing
8
2005 2024
8
erosion
7

Similar Publications

Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.

Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.

View Article and Find Full Text PDF

Disseminated Mycobacterium simiae infection causing rhinosinusitis in a severely immunocompromised patient.

Int J Infect Dis

September 2025

SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontei

Background: Mycobacterium simiae is a slow-growing environmental nontuberculous mycobacterium (NTM), commonly isolated from soil and water. M. simiae is not known to transmit zoonotically or via human-to-human contact; infection is presumed to occur through direct environmental exposure.

View Article and Find Full Text PDF

The response of dissolved organic matter dynamics to flood events in tidal estuaries.

J Environ Manage

September 2025

College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:

Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.

View Article and Find Full Text PDF

Accuracy of recording linear erosion using an unmanned aerial vehicle (UAV).

PLoS One

September 2025

Hydraulic Engineering and Water Management, School of Architecture and Civil Engineering, University of Applied Sciences, Saarbrücken, Germany.

Soil erosion is an ongoing environmental problem. To address this issue, calibrated erosion models are used to forecast areas vulnerable to erosion and to determine appropriate preventive measures. Model calibrations are based on erosion data recorded using different techniques such as photogrammetry from an unmanned aerial vehicle (UAV).

View Article and Find Full Text PDF

Lots of agricultural or environmental studies, researches, policy evaluations are based on Land Parcel Information System (LPIS), combined with other pedo-climatic or agro-environmental data. This is the case for example for different kinds of models, as crop models which have been used widely in France to assess ecosystemic services or carbon storage, agent-based models for watershed analyses or for models assessing erosion risks. However, integration of pedo-climatic and agro-environmental data at a high-resolution level remains challenging.

View Article and Find Full Text PDF