98%
921
2 minutes
20
Antibiotic treatment significantly disrupts the gut microbiome and promotes vancomycin-resistant enterococci (VRE) intestinal colonisation. These disruptions cause the intestine to act as a reservoir for VRE that seed difficult-to-treat infections. Here we show that antibiotics that promote VRE intestinal colonisation increase the concentration of a wide range of nutrients and decrease the concentration of a wide range of microbial metabolites. We show significant but incomplete suppression of VRE growth by individual short chain fatty acids that were decreased in antibiotic-treated faecal microbiomes. However, mixtures of short chain fatty acids provide complete or near complete suppression of VRE growth. We show that VRE use most nutrients increased in antibiotic-treated faecal microbiomes as carbon or nitrogen sources to support their growth, where Enterococcus faecium and Enterococcus faecalis have some common and some distinct preferences for the use of these specific nutrients. Finally, we show that E. faecium and E. faecalis occupy overlapping but distinct nutrient-defined intestinal niches that promote high growth when cultured with each other and when cultured with carbapenem-resistant Enterobacteriaceae. Our results demonstrate that VRE occupy distinct intestinal niches in the antibiotic-treated intestine, defined by their abilities to utilise specific enriched nutrients and their abilities to grow with reduced concentrations of inhibitory microbial metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246219 | PMC |
http://dx.doi.org/10.1038/s41467-025-61731-z | DOI Listing |
EMBO J
September 2025
Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
Many enteric bacterial pathogens deliver virulence effectors to counteract host innate immune responses, such as inflammation and cell death, and colonize the intestinal epithelium. However, host cells recognize the disruption of their innate immune signaling by bacterial effectors and induce alternative immune responses, collectively termed "effector-triggered immunity", to clear bacterial pathogens. Here, we describe a mechanism of cell death induction via effector-triggered immunity and the bacterial countermeasures of the pathogen Shigella flexneri.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China.
Entomopathogenic nematode symbiotic bacteria (EPNB) enhance nematode insecticidal capacity through symbiosis. This study cloned the complete 32-kb type III secretion system (T3SS) gene cluster from TT01 using Red/ET recombineering and functionally expressed it in T3SS-deficient HN_xs01. Heterologous T3SS expression significantly enhanced HN_xs01 adhesion and invasion capabilities in CF-203 cells.
View Article and Find Full Text PDFFood Funct
September 2025
College of Food Science, Southwest University, Chongqing, 400715, China.
Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDF