Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The airway epithelium represents the first line of defense of the lungs, functioning both as a physical barrier as well as an active immune modulator. However, in the last years, pneumonia caused by the opportunistic pathogen Acinetobacter baumannii have become difficult to treat due to the increase of the number of extensively drug resistant strains. In this study, we report for the first time the use of an ex vivo air-liquid interface (ALI) model of differentiated human bronchial epithelial cells to unravel the early response to A. baumannii infection.

Methods: Epithelial integrity, tissue architecture, and goblet cell function were assessed through FITC-dextran permeability assays, hematoxylin and eosin staining, and indirect immunofluorescence. Transcriptomic profiling was performed to characterize host gene expression changes.

Results: Initial tissue damage began as early as at 4 h post-infection (hpi); at 24 hpi, goblet cell hypertrophy, reduced mucin secretion, and compromised epithelial integrity were highly evident. Transcriptomic data at 4 hpi revealed 668 differentially expressed genes (441 upregulated, 227 downregulated), mainly involved in a strong pro-inflammatory response and characterized by IL-8/CCL20-driven neutrophil recruitment and type 2 cytokine activation (IL-4, IL-13). Noteworthy, genes related to cytoskeletal organization, adhesion, and extracellular matrix remodeling were significantly altered, suggesting a bacterial mechanism to enhanced tissue dissemination. The PI3K-Akt survival pathway was inhibited, with downregulation of PIK3R1 and PIK3R2 genes, implying the induction of apoptosis/cell death and epithelial damage. Our findings are in agreement with previous in vivo studies, further strengthening the value of our ALI model in mimicking the early infection response of bronchial cells to A. baumannii infection.

Conclusion: Our data highlight the early molecular mechanisms underlying A. baumannii pathogenesis and open new avenues for future investigations for therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239265PMC
http://dx.doi.org/10.1186/s12929-025-01159-1DOI Listing

Publication Analysis

Top Keywords

goblet cell
12
acinetobacter baumannii
8
differentiated human
8
human bronchial
8
bronchial epithelial
8
epithelial cells
8
ali model
8
epithelial integrity
8
baumannii
5
early
5

Similar Publications

The Effects of Mesenchymal Stem Cell-Derived Exosomes on the Attenuation of Dry Eye Disease in Sjögren Syndrome Animal Model.

Tissue Eng Regen Med

September 2025

Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #505 BanPo-Dong, SeoCho-Gu, Seoul, 06591, Republic of Korea.

Background: Sjögren's syndrome (SS) is a chronic autoimmune disease delineated by excessive lymphocyte infiltration to the lacrimal or salivary glands, leading to dry eye and dry mouth. Exosomes secreted from mesenchymal stem cells (MSC) are known to have anti-inflammatory and tissue regeneration abilities. This study endeavored to demonstrate the effect of MSC-derived exosomes on the clinical parameter of dry eyes and associated pathology in SS mouse model.

View Article and Find Full Text PDF

Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.

View Article and Find Full Text PDF

An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.

View Article and Find Full Text PDF

This research explored the effects of ginseng residue oligosaccharides (GRO-N) and ginseng polysaccharides (GP-N) on alleviating allergic rhinitis (AR). In a rat model induced by ovalbumin (OVA), both high doses of GRO-N (GRO-N-H) and GP-N (GP-N-H) significantly decreased the frequency of sneezing and rubbing behaviors in AR-affected rats. Histopathological evaluations and cytokine analyses revealed that GRO-N-H and GP-N-H notably lowered the count of goblet cells and reduced inflammatory cytokine levels in these rats.

View Article and Find Full Text PDF

The increased presence of goblet epithelial cells in conducting airways of the respiratory system is common in pulmonary disorders and is often accompanied by disrupted immune and alveolar responses. Signaling effectors that restrict goblet cell production include YAP and TAZ, transcriptional regulators of Hippo signaling, which repress goblet cell differentiation in the airway epithelium. Here, we investigated the acute responses to goblet cell metaplasia that are induced by the conditional loss of YAP/TAZ in club epithelial cells of adult mouse lungs.

View Article and Find Full Text PDF