Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patients with diabetic osteoporosis (DOP) face significant challenges in bone defect repair and regeneration. Adipose-derived stem cells (ASCs) have been widely used in bone tissue engineering due to their accessibility and multi-potency. However, DOP-ASCs exhibit lower capacity for osteogenic differentiation compared to control ASCs (CON-ASCs). In this study, we explored the effects of metformin (Met) on the autophagy and osteogenic capacity of DOP-ASCs. DOP mouse model was established with a high-fat and high-glucose diet combined with streptozotocin injection. After treating DOP-ASCs with Met and 3-methyladenine (3-MA), changes in autophagy levels and osteogenic differentiation capacity were observed by western blot analysis, real-time quantitative PCR (qPCR), immunofluorescence, alkaline phosphatase staining, alizarin red staining, and GFP-LC3 fluorescence labeling analysis. DOP-ASCs were cocultured with the Biphasic Calcium Phosphate (BCP), and implanted into the cranial defect area of DOP mice. The mice then received oral Met and intraperitoneal 3-MA injections for 3 months. The implanted BCP was assessed by micro-CT, HE and Masson staining. We observed a significantly reduced autophagic levels and capacity for osteogenic differentiation in DOP-ASCs, as compared to CON-ASCs. Met activated autophagy in DOP-ASCs and improved their osteogenic differentiation capacity. However, in the DOP + Met + 3MA group, both the autophagic level and the osteogenic differentiation capacity were suppressed. The results from the in vitro research and the in vivo outcomes agreed. Moreover, Met dramatically reduced p-PI3K and p-AKT expression. Met improves the osteogenic differentiation capacity by activating autophagy, an effect mediated through the PI3K/AKT signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.70061DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
28
differentiation capacity
16
osteogenic
8
adipose-derived stem
8
stem cells
8
diabetic osteoporosis
8
capacity osteogenic
8
differentiation
7
capacity
7
dop-ascs
6

Similar Publications

Objective: Progesterone (PG) and its target, progesterone receptor (PGR), are important regulators in inflammatory diseases. This study aimed to investigate the specific role of PG in periodontitis and to elucidate the underlying mechanisms involving PGR.

Methods: Women with periodontitis, including 250 with PG deficiency, 250 with PG supplementation, and 245 controls (normal PG) were enrolled.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF

Osteocalcin promotes mineralization in bone microenvironment via regulating hydroxyapatite formation and integration.

Int J Biol Macromol

September 2025

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic

Within the bone microenvironment, the intricate interplay and regulation among matrix components form a complex network. Disentangling this network is crucial for uncovering potential therapeutic targets in bone pathology. Osteocalcin (OCN), the most abundant non-collagenous bone protein, is an essential node within this network.

View Article and Find Full Text PDF

Particle stabilised high internal phase emulsion scaffolds with interconnected porosity facilitate cell migration.

Biomed Mater

September 2025

School of Chemical, Materials and Biological Engineering, The University of Sheffield, Pam Liversidge Building, Mappin Street, Sheffield, S1 3JD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

A key challenge in bone tissue engineering (BTE) is designing structurally supportive scaffolds, mimicking the native bone matrix, yet also highly porous to allow nutrient diffusion, cell infiltration, and proliferation. This study investigated the effect of scaffold interconnectivity on human bone marrow stromal cell (BMSC) behaviour. Highly interconnected, porous scaffolds (polyHIPEs) were fabricated using the emulsion templating method from 2-ethylhexyl acrylate/isobornyl acrylate (IBOA) and stabilised with ~200 nm IBOA particles.

View Article and Find Full Text PDF

Jiawei yanghe decoction alleviates osteoporotic osteoarthritis by promoting MSC osteogenic differentiation and homing via ITGB6/TGF-β/CXCR4 pathway.

Phytomedicine

August 2025

Zhejiang Provincial Chinese Medicine Hospital (First affiliated hospital of Zhejiang Chinese Medical University), Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310053, China; Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Un

Background: Osteoporotic osteoarthritis (OPOA), a distinct subtype of osteoarthritis (OA), has imposed a significant health and economic burden worldwide. However, mechanistic studies and therapeutic strategies for this disease remain in the exploratory stage.

Purpose: This study aimed to investigate the specific molecular mechanisms by which osteoporosis (OP) exacerbates OA progression through accelerated subchondral bone (SB) sclerosis and the potential of Jiawei Yanghe Decoction (JWYHD) in treating OPOA.

View Article and Find Full Text PDF