Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the gut microbiota composition and functional adaptations in three indigenous fish species from the Kizil River, Xinjiang: (SB), (DM), and (TY), recognizing their ecological significance and the need for conservation insights. Shotgun metagenomics was employed to profile the gut microbiota and functional potential. Taxonomic and functional annotations were analyzed, including identification of dominant taxa, biomarkers (LEfSe), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for metabolic functions, and Carbohydrate-Active enZymes (CAZy) database annotations. Environmental parameters (crude oil pollution, nitrogen levels, pathogen presence) were assessed, and dietary shifts during overwintering were characterized. Distinct gut microbiota profiles were identified: Proteobacteria, , and Pseudomonas were dominant overall. Species-specific biomarkers were Micromonospora (DM); Proteobacteria, Firmicutes, Aeromonas, and Bacillus (SB); and Mucoromycota, Vibrio, and Alcanivorax (TY). DM and SB exhibited significantly higher Firmicutes/Bacteroidetes ratios and enhanced nutrient utilization capabilities compared to TY. Key functional pathways included enriched fructose/mannose metabolism (SB) and oxidative phosphorylation (DM). CAZy analysis revealed high CE3 abundance across species, with GT6/GT10 (SB) and PL22 (TY) serving as unique enzymatic biomarkers. Dietary shifts during overwintering occurred: DM and TY transitioned towards herbivory, while SB retained carnivorous tendencies despite increased plant consumption. All species showed reduced immunity, with DM and SB particularly vulnerable to -related infections. Environmental analysis revealed crude oil pollution, elevated nitrogen levels, and contamination with . TY demonstrated notable salinity adaptability but heightened sensitivity to pollution. Host phylogeny exerted a strong influence on microbiota composition and metabolic functions. The results demonstrate host-specific microbial adaptation driven by phylogeny. The distinct functional profiles (nutrient utilization, key metabolic pathways like fructose/mannose metabolism and oxidative phosphorylation, CAZy enzymes) reflect ecological niche specialization. The observed dietary shifts and reduced winter immunity, compounded by environmental stressors (crude oil, nitrogen, ), highlight critical vulnerabilities, especially for DM and SB. TY's salinity adaptation is counterbalanced by pollution sensitivity. This study provides essential insights for developing targeted conservation strategies and sustainable aquaculture practices for these indigenous species within their natural habitat, emphasizing the need for pollution mitigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12237253PMC
http://dx.doi.org/10.3389/fmicb.2025.1617701DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
crude oil
12
dietary shifts
12
shotgun metagenomics
8
three indigenous
8
indigenous fish
8
fish species
8
species kizil
8
kizil river
8
river xinjiang
8

Similar Publications

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Parity influences on the infant gut microbiome development: a longitudinal cohort study.

Gut Microbes

December 2025

Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.

Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.

View Article and Find Full Text PDF

Metabolic consequences and gut microbiome alterations in rats consuming pork or a plant-based meat analogue.

Food Funct

September 2025

Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.

It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.

View Article and Find Full Text PDF

Periprosthetic joint infection: Time to think outside the box.

Knee Surg Sports Traumatol Arthrosc

September 2025

International Joint Center, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.

Despite undisputed success of orthopaedic procedures, surgical site infections (SSI) such as periprosthetic joint infection (PJI) continues to compromise the outcome and result in major clinical and economic burden. The overall rate of infection is expected to rise in the future resulting in significant associated mortality and morbidity. Traditional concepts have largely attributed the source of PJI to exogenous pathogens.

View Article and Find Full Text PDF