Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins under physiological conditions have an intrinsically dynamic nature; they sample a multitude of different conformational substates that allow them to perform their biological functions. Protein motions can take place on a wide range of timescales. Although there are many different NMR experiments with sensitivity to different time windows, it has proven difficult to measure intramolecular motions that happen in the nanosecond-to-microsecond regime. Nanoparticle-assisted NMR spin relaxation (NASR) has recently been introduced to overcome this long-standing challenge. When colloidal nanoparticles are added to proteins in solution, the effective global tumbling of the protein molecules slows down, whereas the internal motions remain essentially unperturbed. NASR extends the protein dynamics observation window from picoseconds all the way into the microsecond range. In this protocol, the NASR effect is realized by using commercially available silica nanoparticles, and NMR measurements are acquired by using a standard high-field solution NMR spectrometer. NASR data analysis is shown to be straightforward. We demonstrate NASR by detecting sub-microsecond dynamics in the Switch I and II regions of oncogenic human KRAS and in the Loop I region of bacterial colicin-immunity protein Im7, among other protein constructs. When an isotope-labeled protein sample is available, this protocol can be executed in 2-5 d, including sample preparation, NMR experiments and data processing and analysis, to uncover potentially functionally important intramolecular dynamics at atomic resolution on timescales that are several orders of magnitude slower than what conventional spin relaxation experiments can observe.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-025-01177-1DOI Listing

Publication Analysis

Top Keywords

spin relaxation
12
protein dynamics
8
nanoparticle-assisted nmr
8
nmr spin
8
relaxation nasr
8
nmr experiments
8
protein
7
nmr
6
nasr
6
detection intramolecular
4

Similar Publications

Parasagittal dural space and arachnoid granulations morphology in pre-clinical and early clinical multiple sclerosis.

Mult Scler

September 2025

Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Medical Center, TN Valley Healthcare System, Nashville, TN, USA.

Background: There is limited knowledge on the post-glymphatic structures such as the parasagittal dural (PSD) space and the arachnoid granulations (AGs) in multiple sclerosis (MS).

Objectives: To evaluate differences in volume and macromolecular content of PSD and AG between people with newly diagnosed MS (pwMS), clinically isolated syndrome (pwCIS), or radiologically isolated syndrome (pwRIS) and healthy controls (HCs) and their associations with clinical and radiological disease measures.

Methods: A total of 69 pwMS, pwCIS, pwRIS, and HCs underwent a 3.

View Article and Find Full Text PDF

Chiral halide perovskite (c-HP) semiconductors exhibit on average a large chiral-induced spin selectivity (CISS) effect. Nevertheless, the microscopic details of CISS and its integration in opto-spintronic constructs remain nascent. Reliable reporting of CISS performance characteristics represents a significant challenge in providing the necessary design rules.

View Article and Find Full Text PDF

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

First-principles insights into structure and magnetism in ultra-small tetrahedral iron oxide nanoparticles.

Phys Chem Chem Phys

September 2025

Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.

Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.

View Article and Find Full Text PDF