98%
921
2 minutes
20
The engineering of tissue interfaces presents a formidable challenge due to their intricate gradient structures marked by the gradual shift of biochemical and mechanical characteristics at the microscopic level, facilitating smooth interaction and synchronized operation between neighbouring yet distinct tissues. Examples of such interfaces include tendon/ligament-bone, muscle-tendon, and cartilage-bone. This review examines the heterogeneous and anisotropic architecture of anatomical tissues, highlighting the challenges associated with replicating these intricate structures. Additionally, it explores recent advancements in 3D bioprinting techniques aimed at fabricating complex, biomimetic scaffolds that enhance tissue regeneration and functional integration. 3D bioprinting has demonstrated the ability to accurately arrange chemical, biological, and mechanical signals within an integrated structure, effectively replicating these native tissue junctions. Major bioprinting approaches, such as inkjet, extrusion, laser-assisted, and stereolithography-based methods, are detailed in terms of their mechanisms, advantages, and limitations. Notable innovations, such as the use of advanced bioinks containing novel biomaterials such as decellularized extracellular matrix for various tissues, to enhance biomimicry and functionality, and the development of gradient scaffolds interfaces, are discussed. Furthermore, the review identifies current translational challenges and future directions, including the need for high-resolution bioprinters, the development of multiphasic scaffolds, and the incorporation of multiscale vascular networks into bioprinted tissues to ensure their viability and functionality post-transplantation. Overall, this review underscores the revolutionary impact of 3D bioprinting in the fabrication of functional, heterogeneous tissue constructs, emphasizing its role in driving advancements in tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2025.125939 | DOI Listing |
Biomed Mater
September 2025
Department of Nanobiotechnology, Faculty of Biological Sciences, , Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran, Tehran, Tehran Province, 14115-154, Iran (the Islamic Republic of).
It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional (3D) bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with NHEK-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2025
Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
The Third Department of Orthopedic Surgery, Fuxin Mining General Hospital of Liaoning Health Industry Group, Liaoning, China.
Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.
View Article and Find Full Text PDFDynamic alteration of blood vessel geometry is an inherent feature of the circulatory system. However, while the engineering of multiscale, branched, and interconnected blood vessels has been well explored, mimicking the dynamic behavior (e.g.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea.
Tissue engineering holds a significant promise for the development of bioartificial organs applicable to transplantation. However, the size of engineered tissues remains limited, primarily due to the challenge of establishing microvascular networks within tissue constructs. In this study, engineered tissues are fabricated and embedded with functional microvascular networks by assembling endothelial cell-covered spheroidal microtissues.
View Article and Find Full Text PDF