98%
921
2 minutes
20
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by cyst formation in the kidneys, and is associated with an elevated risk of intracranial aneurysms (IAs). Although a family history is a recognized risk factor for IAs in patients with ADPKD, emerging research suggests that gut microbiome composition may influence IA development. We investigated the relationship between the gut microbiome and the development of IA in patients with ADPKD. We recruited patients with ADPKD with (IA group) and without (non-IA group) IA from Osaka University between October 2021 and December 2023. Fecal samples were analyzed using 16S rRNA sequencing. Data were processed using the QIIME 2 pipeline to determine microbial diversity and composition. We included 60 patients: 26 in the IA and 34 in the non-IA groups. There were significant differences in microbial beta diversity between the groups. The IA group had higher abundances of Eubacterium siraeum group, Oscillibacter, Fournierella, Negativibacillus, Colidextribacter, and Adlercreutzia. The non-IA group had higher abundances of Bifidobacterium, Megamonas, Acidaminococcus, Megasphaera, and Merdibacter. There was a significant association between the gut microbiome composition and the presence of IAs in patients with ADPKD. Specific bacterial taxa were differentially abundant between patients with ADPKD with and without IAs, suggesting a potential role of the gut microbiome in the pathogenesis of IAs in this genetically predisposed population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234805 | PMC |
http://dx.doi.org/10.1038/s41598-025-08942-y | DOI Listing |
Front Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
Front Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDFNat Sci Sleep
September 2025
Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Background: Recent research has increasingly underscored a significant correlation between gut microbiota and obstructive sleep apnea (OSA). Probiotics have emerged as promising adjunctive interventions for OSA. Metabolites and their related biochemical pathways have emerged as important contributors to the development of OSA.
View Article and Find Full Text PDFFront Pediatr
August 2025
Department of Neonatal Research, Inova Health Services, Falls Church, VA, United States.
Introduction: Neonatal sepsis is a dysregulated immune response to bloodstream infection causing serious disease and death. Our review seeks to integrate the knowledge gained from studies of multiple molecular methods- such as genomics, metabolomics, transcriptomics, and the gut microbiome- in the setting of neonatal sepsis that may improve the diagnosis, classification, and treatment of the disease. Sepsis claims over 200,000 lives annually worldwide and remains a top 10 cause of infant mortality in the US.
View Article and Find Full Text PDF