Multi-omics analyses provide insights into the molecular basis for salt tolerance of Phyla nodiflora.

Plant J

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The perennial herbaceous plant, Phyla nodiflora (Verbenaceae), which possesses natural resistance to multiple abiotic stresses, is widely used as a pioneer species in island ecological restoration. Due to the lack of information about its genome, the mechanism underlying its tolerance to environmental stresses, such as salinity, is almost entirely unknown. Here, we report on the high-quality genome of P. nodiflora that is 403.07 Mb in size, and which was assembled and anchored onto 18 pseudo-chromosomes. Genomic synteny revealed that P. nodiflora underwent two whole genome duplication events, which promoted the expansion of genes related to environmental adaptation and the biosynthesis of secondary metabolites. An integrated genomic and transcriptomic analysis suggested that salt stress tolerance in P. nodiflora is associated with the expansion and activated expression of genes related to abscisic acid (ABA) homeostasis and signaling. The expansion of ZEP family genes may contribute to the consistent increase in ABA levels under salt stress. Lysine acetylomic analysis revealed that exposure to salt led to widespread protein deacetylation, with these proteins primarily involved in signal transduction, carbohydrate transport and metabolism, and transcription regulation. Deacetylation of glutathione S-transferase increased enzymatic activities in response to salt-induced oxidative stress. Collectively, the genomic, transcriptomic, and lysine acetylomic analyses provide profound insight into the molecular basis of the adaptation of P. nodiflora to salt stress, and will be helpful to engineer salt-tolerant plants for ecological restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.70325DOI Listing

Publication Analysis

Top Keywords

salt stress
12
analyses provide
8
molecular basis
8
phyla nodiflora
8
ecological restoration
8
genomic transcriptomic
8
lysine acetylomic
8
nodiflora
6
salt
5
multi-omics analyses
4

Similar Publications

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF

Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.

View Article and Find Full Text PDF

Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.

Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .

View Article and Find Full Text PDF

DREB7 in (L) is a novel trans-acting transcription factor (TF) that binds to the -acting sequences of promoters to activate the expression of downstream genes in response to abiotic factors. This study presents the experimental results and analyzes the relationship between the overexpression of the and , as well as the proline content, in transgenic soybean lines. The results of qRT-PCR analysis of four TG1 transgenic soybean lines (TG1-2, TG1-5, TG1-7, and TG1-10) showed that the gene had significantly higher transcriptional expression under untreated and salt stress conditions.

View Article and Find Full Text PDF