Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

GH7 cellobiohydrolases (CBH1s) are essential for depolymerizing crystalline cellulose, yet the hypercellulolytic thermophile Rasamsonia emersonii secretes them only in low amounts, leaving a gap in its native enzyme cocktail. To see whether a cognate CBH1 could fill this gap and how it stacks up against the industrial workhorse strain Trichoderma reesei Cel7A, we codon optimized the R. emersonii gene (Rem_GH7CBHI), expressed it in Pichia pastoris and purified the recombinant enzyme for structural and functional analysis. The 57 kDa protein retains the canonical GH7 βsandwich tunnel, but an AlaforTyr substitution leaves the channel more open than that of T. reesei, potentially easing substrate entry. Consistent with this architecture, Rem_GH7CBHI binds cellotriose tightly and exhibits a low Kₘ of 0.25 mM. Biochemical characterization revealed the optimal activity at pH 5.0, 60 °C and retaining about 60% activity after 1 h at 70 °C. Adding Rem_GH7CBHI together with an endogenous AA9 LPMO to the native R. emersonii secretome (M36) boosted saccharification of steamacidpretreated rice straw to levels comparable with commercial Cellic CTec3 at the same total protein loading. These results position Rem_GH7CBHI as a thermostable, highaffinity alternative to T. reesei Cel7A and a costeffective addition to tailored enzyme cocktails for highsolids lignocellulose biorefineries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-025-04473-wDOI Listing

Publication Analysis

Top Keywords

rasamsonia emersonii
8
emersonii secretome
8
reesei cel7a
8
fortifying rasamsonia
4
emersonii
4
secretome recombinant
4
recombinant cellobiohydrolase
4
cellobiohydrolase gh7
4
gh7 efficient
4
efficient biomass
4

Similar Publications

GH7 cellobiohydrolases (CBH1s) are essential for depolymerizing crystalline cellulose, yet the hypercellulolytic thermophile Rasamsonia emersonii secretes them only in low amounts, leaving a gap in its native enzyme cocktail. To see whether a cognate CBH1 could fill this gap and how it stacks up against the industrial workhorse strain Trichoderma reesei Cel7A, we codon optimized the R. emersonii gene (Rem_GH7CBHI), expressed it in Pichia pastoris and purified the recombinant enzyme for structural and functional analysis.

View Article and Find Full Text PDF

d-Amino acid oxidase from the thermophilic fungus Rasamsonia emersonii (ReDAAO) has garnered attention due to its high stability and broad substrate specificity, making it a promising candidate for various applications. In this study, we explored the structural factors underlying the unique substrate specificity of ReDAAO, particularly its broad substrate range and d-Glu oxidation ability. Comparing ReDAAO with TdDAAO-a homologous d-amino acid oxidase from the thermophilic fungus Thermomyces dupontii-revealed that ReDAAO lacks the YVLQG loop present in TdDAAO, which exhibited narrower substrate specificity.

View Article and Find Full Text PDF

d-Amino acid oxidase from the thermophilic fungus Rasamsonia emersonii strain YA (ReDAAO) exhibits high thermostability. To understand the structural basis for this high stability, we isolated thermolabile variants of ReDAAO with a single amino acid substitution (L134P, K203E, C230S, V275G, and V305L), whose T (the temperature at which 50 % of the initial enzyme activity was retained) values were 12-18 °C lower than that of the wild-type. The L134P substitution in a flexible protein surface loop caused the most severe destabilization, likely due to increased loop flexibility through hydrogen bond disruption.

View Article and Find Full Text PDF

In this study, two thermostable endoglucanases (Rem_GH5EG and Rem_GH7EG) from Rasamsonia emersonii were heterologously expressed in Pichia pastoris and characterized to evaluate their potential for industrial biomass saccharification. Rem_GH5EG demonstrated markedly superior catalytic efficiency toward barley β-glucan (kcat/Km = 6.3 × 10/mg mL/min), while Rem_GH7EG exhibited a preference for carboxymethyl cellulose (kcat/Km = 1.

View Article and Find Full Text PDF

Molecular cloning, overexpression, characterization, and mechanism explanation of an esterase RasEst3 for ester synthesis under aqueous phase.

Int J Biol Macromol

May 2025

Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation

Fatty acid esters are widely used in fragrance compounds, solvents, lubricants, and biofuels. Enzymatic synthesis of these esters in aqueous phase is an environmentally friendly approach. In this study, an esterase RasEst3 from Rasamsonia emersonii was identified for fatty acid ester synthesis through sequence alignment.

View Article and Find Full Text PDF