Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aging is characterized by a gradual deterioration of the physiological integrity of cells, tissues, and organs, resulting in a decrease in the body's physiological functions and an acceleration of the onset of age-related diseases, ultimately leading to death. The aging of the liver, which is a critical metabolic organ, is closely linked to various chronic liver diseases, such as hepatitis, liver fibrosis, and cirrhosis, and it exacerbates their prognosis and is a primary risk factor for their development at all stages. Therefore, a comprehensive understanding of the causes, mechanisms, and potential therapeutic targets associated with liver aging holds significant clinical importance for delaying or potentially reversing liver aging and for treating chronic liver diseases. Stem cells, which are potential anti-aging agents, present a promising and effective alternative for managing liver aging. In this review, we systematically assess the driving factors, characteristics, and underlying mechanisms of liver aging. We then discuss the current status of the use of stem cells to mitigate liver senescence and address related liver diseases. The review reveals that a stem cell-based approach represents a promising therapeutic strategy for combating liver aging and associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226799PMC
http://dx.doi.org/10.1016/j.livres.2025.04.003DOI Listing

Publication Analysis

Top Keywords

liver aging
24
liver
12
liver diseases
12
stem cell-based
8
aging
8
chronic liver
8
stem cells
8
diseases
5
stem
4
cell-based therapeutic
4

Similar Publications

Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.

Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.

View Article and Find Full Text PDF

Ilimaquinone-induced lipophagy diminishes lipid accumulation via AMPK activation.

BMB Rep

September 2025

Research Institute for Korean Medicine, Pusan National University, Yangsan 50612; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 05612, Korea.

Lipid metabolism plays an important role in aging and longevity, and lipophagy-a specialized form of autophagy that targets lipid vesicles-regulates lipid homeostasis and alleviates metabolic diseases such as metabolic dysfunctionassociated steatotic liver disease (MASLD). Ilimaquinone (IQ), a sesquiterpene extracted from the sea, is well-known for its various biological effects; however, its effects on lipid metabolism and longevity have not yet been elucidated. In this study, IQ acted in a dose-dependent manner, extending the lifespan of Caenorhabditis elegans (C.

View Article and Find Full Text PDF

7-Ketocholesterol as a Critical Oxysterol: Impact on Human Health and Safety in Food Systems.

J Steroid Biochem Mol Biol

September 2025

Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:

7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Background: Studies examining the association of chronic kidney disease (CKD) with cancer risk have demonstrated conflicting results.

Methods: This was an individual participant data meta-analysis including 54 international cohorts contributing to the CKD Prognosis Consortium. Included cohorts had data on albuminuria [urine albumin-to-creatinine ratio (ACR)], estimated glomerular filtration rate (eGFR), overall and site-specific cancer incidence, and established risk factors for cancer.

View Article and Find Full Text PDF

The gut-liver axis in progressive steatotic liver disease: A focus on bile acid dysregulation.

J Nutr Health Aging

September 2025

Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom; Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Via Francesco Sforza, 35, 20122 Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Angelo Bia

Introduction: The gut-liver axis regulates metabolic homeostasis, with bile acids (BAs) serving as key signalling molecules. BA dysregulation is implicated in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction- and alcohol-associated liver disease (MetALD), yet consistent identification of BA markers and their mechanistic roles across different stages of these diseases remain elusive.

Methods: We integrated three complementary studies to examine BA dysregulation: a population-based cohort (1522 females from TwinsUK with serum BA and liver biomarker data), a clinical cohort (30 patients with steatotic liver disease, fibrosis stages F0-F4, and 4 controls), and rodent models (20 rats with MASLD/MetALD vs.

View Article and Find Full Text PDF