A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

DNA-Templated Spatially Controlled Proteolysis Targeting Chimera for Cyclin D1-CDK4/6 Complex Protein Degradation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Constraining proximity-based drugs, such as proteolysis targeting chimeras (PROTACs), into their bioactive conformation can significantly impact their selectivity and potency. However, traditional methods for achieving this often involve complex and time-consuming synthetic procedures. Here, we introduced an alternative approach by demonstrating DNA-templated spatially controlled PROTACs (DTACs), which leverage the programmability of nucleic acid-based self-assembly for efficient synthesis and offer precise control over inhibitors' spacing and orientation. The resulting constructs revealed distance- and orientation-dependent selectivity and degradation potency for the Cyclin D1-CDK4/6 protein complex in cancer cells. Notably, the optimal construct DTAC-V1 demonstrated unprecedented synchronous degradation of the entire Cyclin D1-CDK4/6 complex, leading to robust G1-phase cell cycle arrest and effective inhibition of cancer cell proliferation. Furthermore, in a xenograft mouse model, DTAC-V1 exhibited potent therapeutic efficacy by effectively degrading Cyclin D1-CDK4/6 and suppressing tumor growth, underscoring its potential as an anticancer agent. Overall, our findings demonstrate the feasibility of DTAC as a rapid, scalable, and modular platform for the spatial control of functional inhibitors for optimal effectiveness, making it a promising method for proximity-based therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c04918DOI Listing

Publication Analysis

Top Keywords

cyclin d1-cdk4/6
16
dna-templated spatially
8
spatially controlled
8
proteolysis targeting
8
d1-cdk4/6 complex
8
controlled proteolysis
4
targeting chimera
4
cyclin
4
chimera cyclin
4
d1-cdk4/6
4

Similar Publications