98%
921
2 minutes
20
Virus infection stimulates proto-oncoprotein PIM1 kinase expression, but its importance and the biological functions of this process are poorly understood. Herein, PIM1 promotes IFNAR1 degradation to attenuate cellular innate immunity during human coronavirus HCoV-OC43 infection. During virus replication, the double-stranded viral RNA and some viral proteins upregulate PIM1 expression, which phosphorylates E3 ubiquitin ligase β-TrCP1 at Serine 82. The pS82-β-TrCP1 then forms a complex with S535/S539-phosphorylated interferon receptor IFNAR1 (pS535/539-IFNAR1), leading to IFNAR1 ubiquitination and degradation. Both pan-inhibitors (CX-6528, SGI-1776, AZD-1208) and a specific inhibitor of PIM1 kinase (PIM1 inhibitor 2) effectively block this process and potently inhibit viral replication. This studies demonstrate a novel strategy that viruses use to disrupt cellular innate immunity, suggesting a potential therapeutic target for further anti-virus drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202503487 | DOI Listing |
Pestic Biochem Physiol
November 2025
Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.
The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.
View Article and Find Full Text PDFVirology
September 2025
Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:
To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.
View Article and Find Full Text PDFMol Immunol
September 2025
Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, 221005, India. Electronic address:
The innate immune response is a double-edged sword in insects, comprising the humoral and cellular mechanisms to fight and eliminate pathogens. The humoral response is achieved by the production of antimicrobial peptides, which are secreted in the hemolymph. The cellular responses are mediated by phagocytosis, encapsulation and melanization.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
Laboratory of Applied Immunology in Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88035-972 Florianópolis, SC, Brazil. Electronic address:
Environmental and nutritional factors are critical in modulating the immune system of Penaeus vannamei, particularly under viral threats such as white spot syndrome virus (WSSV). This study evaluated the effects of two Amazonian plant-based feed additives, buriti (Mauritia flexuosa) and pracaxi (Pentaclethra macroloba) brans, on shrimp immunocompetence, oxidative balance, and resistance to WSSV. Shrimp were fed diets supplemented with 4% or 8% of each ingredient.
View Article and Find Full Text PDF