Anticancer and chemo-sensitizing effects of annonacin via p53-mediated DNA damage in ovarian cancer.

Biochim Biophys Acta Mol Basis Dis

Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ovarian cancer (OC) is a highly lethal malignancy in women, often diagnosed at advanced stages. Carboplatin is the primary chemotherapy drug used clinically; however, most patients experience relapse and develop drug resistance after initial treatment, underscoring the urgent need for novel therapeutic strategies. This study investigated the anti-cancer activity and chemo-sensitizing effects of annonacin, an active compound in the fruit extract of Asimina triloba, as well as its underlying mechanisms in OC. Our results demonstrated that annonacin significantly inhibited OC cell viability, DNA replication, and proliferation, while inducing cell cycle arrest and senescence. Additionally, annonacin reduced OC cell-matrix adhesion and suppressed cell migration and invasion. Furthermore, annonacin enhanced the anti-OC efficacy of carboplatin by inducing substantial DNA damage, exhibiting a synergistic anticancer effect. Mechanistically, annonacin exerted potent anti-cancer and anti-migration activities through the p53 signaling pathway-mediated DNA damage response. When combined with carboplatin, this effect was further amplified. In vivo studies showed that annonacin effectively inhibited tumor growth in mice, and its combination with carboplatin demonstrated superior tumor-suppressive capabilities. Acute toxicity assays confirmed that annonacin possesses good biological safety in vivo. Collectively, these findings suggest that annonacin is a promising chemotherapeutic agent for OC treatment and highlight the potential of its combination with carboplatin to improve therapeutic outcomes in OC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2025.167971DOI Listing

Publication Analysis

Top Keywords

dna damage
12
annonacin
9
chemo-sensitizing effects
8
effects annonacin
8
ovarian cancer
8
combination carboplatin
8
carboplatin
5
anticancer chemo-sensitizing
4
annonacin p53-mediated
4
dna
4

Similar Publications

Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.

View Article and Find Full Text PDF

Environmentally Relevant Concentrations of the Fungicide Tebuconazole Cause Genotoxicity in Juveniles of the Fish Jenynsia lineata.

Bull Environ Contam Toxicol

September 2025

Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMDP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.

The potential genotoxicity of the fungicide tebuconazole (TBZ) was evaluated in the freshwater fish Jenynsia lineata when exposed to 0.005, 0.05, 0.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF