A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once

Early transcriptional responses reveal cell type-specific vulnerability and neuroprotective mechanisms in the neonatal ischemic hippocampus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neonatal hypoxic-ischemic (H-I) brain injury, a leading cause of neurodevelopmental disabilities, severely affects the metabolically active and neurogenic hippocampus. To investigate its acute effects and identify drug targets for early therapeutic windows, we applied single-nucleus RNA sequencing on postnatal day 8 (P8) mouse hippocampi under sham, hypoxic, and hypoxic-ischemic conditions. We constructed a comprehensive hippocampal cell atlas and developed a machine-learning classifier for precise cell type identification. Our analysis reveals early vulnerabilities in mature neurons and notable resilience in immature DG, GABAergic, and Cajal-Retzius cells following H-I. Gene regulatory network analysis identified key transcription factors associated with neuronal vulnerability, along with upregulated ribosome biogenesis and dysregulated calcium homeostasis pathways. We observed rapid activation of astrocytes and microglia, with Runx1 identified as a potential key transcription factor associated with early microglia immune responses. Endothelial cells displayed complex transcriptional changes and predicted intercellular signaling patterns that may influence vascular repair and recovery. Our study advances the understanding of immediate cellular and transcriptional responses to neonatal H-I injury, providing new insights into hippocampal cell heterogeneity and pathophysiology. The integrated hippocampal atlas, post-H-I atlas, and machine learning classifier are available at https://hippo-seq.org .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228329PMC
http://dx.doi.org/10.1186/s40478-025-02062-4DOI Listing

Publication Analysis

Top Keywords

transcriptional responses
8
hippocampal cell
8
key transcription
8
early
4
early transcriptional
4
responses reveal
4
cell
4
reveal cell
4
cell type-specific
4
type-specific vulnerability
4

Similar Publications

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.

View Article and Find Full Text PDF

The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.

View Article and Find Full Text PDF

Unlabelled: Oropouche fever is a debilitating disease caused by Oropouche virus (OROV), an arthropod-borne member of the Peribunyaviridae family. Despite its public health significance, the molecular mechanisms driving OROV pathogenesis remain poorly understood. In other bunyaviruses, the nonstructural NSs protein encoded by the small (S) genome segment acts as a major virulence factor.

View Article and Find Full Text PDF

The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.

View Article and Find Full Text PDF