Publications by authors named "Aleksandr Ianevski"

Mature T-cell leukemias and lymphomas (mTCL) comprise a clinically and genetically heterogeneous group of lymphoid malignancies. Most subtypes of peripheral T-cell lymphomas and leukemic T-cell malignancies show an aggressive clinical course and poor prognosis. Thus, these diseases urgently require novel therapeutic strategies.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic (H-I) brain injury, a leading cause of neurodevelopmental disabilities, severely affects the metabolically active and neurogenic hippocampus. To investigate its acute effects and identify drug targets for early therapeutic windows, we applied single-nucleus RNA sequencing on postnatal day 8 (P8) mouse hippocampi under sham, hypoxic, and hypoxic-ischemic conditions. We constructed a comprehensive hippocampal cell atlas and developed a machine-learning classifier for precise cell type identification.

View Article and Find Full Text PDF

Unlabelled: Combination therapies are one potential approach to improve the outcomes of patients with relapsed/refractory (R/R) disease. However, comprehensive testing in scarce primary patient material is hampered by the many drug combination possibilities. Furthermore, inter- and intrapatient heterogeneity necessitates personalized treatment optimization approaches that effectively exploit patient-specific vulnerabilities to selectively target both the disease- and resistance-driving cell populations.

View Article and Find Full Text PDF

T-prolymphocytic leukemia (T-PLL) is a rare, aggressive T-cell malignancy with poor outcomes and an urgent need for new therapeutic approaches. Integrating genomic data and new transcriptomic profiling, we identified recurrent JAK/STAT mutations (predominantly in JAK3 and STAT5B) as hallmarks in a cohort of 335 T-PLL cases. In line, transcriptomic and protein analyses revealed constitutive JAK/STAT activation in virtually all samples.

View Article and Find Full Text PDF

Repurposing of existing drugs for new indications has attracted substantial attention owing to its potential to accelerate drug development and reduce costs. Hundreds of computational resources such as databases and predictive platforms have been developed that can be applied for drug repurposing, making it challenging to select the right resource for a specific drug repurposing project. With the aim of helping to address this challenge, here we overview computational approaches to drug repurposing based on a comprehensive survey of available in silico resources using a purpose-built drug repurposing ontology that classifies the resources into hierarchical categories and provides application-specific information.

View Article and Find Full Text PDF

Enteroviruses can infect various human organs, causing diseases such as meningitis, the common cold, hand-foot-and-mouth disease, myocarditis, pancreatitis, hepatitis, poliomyelitis, sepsis, and type 1 diabetes. Currently, there are no approved treatments for enterovirus infections. In this study, we identified a synergistic combination of orally available, safe-in-man pleconaril, AG7404, and mindeudesivir, that at non-toxic concentrations effectively inhibited enterovirus replication in human cell and organoid cultures.

View Article and Find Full Text PDF

Antiviral drugs are crucial for managing viral infections, but current treatment options remain limited, particularly for emerging viruses. These drugs can be classified based on their chemical composition, including neutralizing antibodies (nAbs), recombinant human receptors (rhRs), antiviral CRISPR/Cas systems, interferons, antiviral peptides (APs), antiviral nucleic acid polymers, and small molecules. Some of these agents target viral factors, host factors, or both.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK-cell function with oncological drugs could improve NK-cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of >500 small-molecule compounds, to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation.

View Article and Find Full Text PDF

Biomarkers associated with the progression from gastric intestinal metaplasia (GIM) to gastric adenocarcinoma (GA), i.e., GA-related GIM, could provide valuable insights into identifying patients with increased risk for GA.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenge of treating advanced cancers, where cellular diversity requires therapies targeting multiple cancer cell populations.* -
  • A machine learning tool called scTherapy uses single-cell transcriptomic data to identify personalized multi-targeting treatment options for patients with various cancers, like acute myeloid leukemia and ovarian carcinoma.* -
  • Results show that 96% of the proposed treatments are effective and selective for cancer cells, with 83% having low toxicity to healthy cells, suggesting a promising avenue for safer and more effective cancer therapies.*
View Article and Find Full Text PDF

RepurposeDrugs (https://repurposedrugs.org/) is a comprehensive web-portal that combines a unique drug indication database with a machine learning (ML) predictor to discover new drug-indication associations for approved as well as investigational mono and combination therapies. The platform provides detailed information on treatment status, disease indications and clinical trials across 25 indication categories, including neoplasms and cardiovascular conditions.

View Article and Find Full Text PDF

T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, that is, the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL's pathobiology fostered the identification of actionable vulnerabilities: (1) altered epigenetics, (2) defective DNA damage responses, (3) aberrant cell-cycle regulation, and (4) deregulated prosurvival pathways, including T-cell receptor and JAK/STAT signaling.

View Article and Find Full Text PDF

Summary: The limited resolution of spatial transcriptomics (ST) assays in the past has led to the development of cell type annotation methods that separate the convolved signal based on available external atlas data. In light of the rapidly increasing resolution of the ST assay technologies, we made available and investigated the performance of a deconvolution-free marker-based cell annotation method called scType. In contrast to existing methods, the spatial application of scType does not require computationally strenuous deconvolution, nor large single-cell reference atlases.

View Article and Find Full Text PDF

BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34 leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34CD38 CML cells and demonstrate potent synergies when combined with TKIs.

View Article and Find Full Text PDF

Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • - Immunocompromised patients struggle to build strong vaccine-induced immunity against emerging SARS-CoV-2 variants, particularly the Omicron subvariants, highlighting the need for new treatment methods.
  • - Researchers have developed a long-acting viral entry-blocking molecule by fusing a modified ACE2 variant with human albumin to improve stability and binding to the virus.
  • - This engineered ACE2-albumin fusion shows strong effectiveness in neutralizing SARS-CoV-2 variants and can be delivered through non-invasive nasal administration, providing a promising alternative to traditional treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Most cancer patients currently face aggressive chemotherapy treatments that can be very toxic, but personalized medicine offers more effective alternatives tailored to individual needs.
  • A new computational method called selective drug-sensitivity scoring (DSS) quantifies how well drugs work specifically on cancer cells compared to normal cells, helping to identify safer treatment options.
  • The DSS approach, which is applicable to various types of cancer, can be implemented quickly using open-source R software, along with access to a reference database of drug responses from healthy samples.
View Article and Find Full Text PDF

Vaccinated convalescents do not develop severe COVID-19 after infection with new SARS-CoV-2 variants. We questioned how messenger RNA (mRNA) vaccination of convalescents provides protection from emerging virus variants. From the cohort of 71 convalescent plasma donors, we identified a patient who developed immune response to infection with SARS-CoV-2 variant of 20A clade and who subsequently received mRNA vaccine encoding spike (S) protein of strain of 19A clade.

View Article and Find Full Text PDF

Functional precision medicine (fPM) offers an exciting, simplified approach to finding the right applications for existing molecules and enhancing therapeutic potential. Integrative and robust tools ensuring high accuracy and reliability of the results are critical. In response to this need, we previously developed Breeze, a drug screening data analysis pipeline, designed to facilitate quality control, dose-response curve fitting, and data visualization in a user-friendly manner.

View Article and Find Full Text PDF

T-prolymphocytic leukemia (T-PLL) is a rare and mature T-cell malignancy with characteristic chemotherapy-refractory behavior and a poor prognosis. Molecular concepts of disease development have been restricted to protein-coding genes. Recent global microRNA (miR) expression profiles revealed miR-141-3p and miR-200c-3p (miR-141/200c) as two of the highest differentially expressed miRs in T-PLL cells versus healthy donor-derived T cells.

View Article and Find Full Text PDF

Many efforts are underway to develop novel therapies against the aggressive high-grade serous ovarian cancers (HGSOCs), while our understanding of treatment options for low-grade (LGSOC) or mucinous (MUCOC) of ovarian malignancies is not developing as well. We describe here a functional precision oncology (fPO) strategy in epithelial ovarian cancers (EOC), which involves high-throughput drug testing of patient-derived ovarian cancer cells (PDCs) with a library of 526 oncology drugs, combined with genomic and transcriptomic profiling. HGSOC, LGSOC and MUCOC PDCs had statistically different overall drug response profiles, with LGSOCs responding better to targeted inhibitors than HGSOCs.

View Article and Find Full Text PDF

The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules.

View Article and Find Full Text PDF

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19.

View Article and Find Full Text PDF

Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable.

View Article and Find Full Text PDF