A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of protective performance of children helmets via biomechanical modelling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: The purpose of the current study was to compare the protective performance of helmet designs with different sizes and cushion materials for skull and brain injuries in children. : A 6-year-old child head finite element (FE) model with high biofidelity was used to conduct impact simulations under the protection of helmets with different sizes (small, medium and large) and cushion materials (EPS-expanded polystyrene, PU-polyurethane and airbag) according to the testing conditions specified by the standard. Then, the protective performance of different helmet designs was evaluated by assessing skull and brain injury risk calculated based on the kinematic and biomechanical response of the child head model. : The skull fracture risk of children under the protection of airbag helmets is lower than that of EPS and PU helmets by more than 50%. Large-sized helmets, with thicker padding, show better protective capability for skull injury compared to small-sized helmets. The risk of brain injury under airbag helmet protection is significantly lower than EPS and PU helmet under 4.8 m/s sharp anvil impact test condition, and small sized helmet could generally reduce brain injury risk under the 6.2 m/s flat anvil impact test condition. However, no obvious effect has been found of helmet size and material to brain injury risk in the impact scenarios at 6.2 m/s. : The size and cushion material of the helmet have a significant influence on its skull injury protection performance, but their effect pattern on brain injury protection capability is not obvious. The use of airbag helmets with larger buffering stroke can effectively reduce both the risk of skull and brain injuries under relatively low impact loads.

Download full-text PDF

Source
http://dx.doi.org/10.37190/abb-204990DOI Listing

Publication Analysis

Top Keywords

brain injury
20
protective performance
12
skull brain
12
injury risk
12
performance helmet
8
helmet designs
8
cushion materials
8
brain injuries
8
child head
8
airbag helmets
8

Similar Publications