A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Progression risk of adolescent idiopathic scoliosis based on SHAP-Explained machine learning models: a multicenter retrospective study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To develop an interpretable machine learning model, explained using SHAP, based on imaging features of adolescent idiopathic scoliosis extracted by convolutional neural networks (CNNs), in order to predict the risk of curve progression and identify the most accurate predictive model.

Methods: This study included 233 patients with adolescent idiopathic scoliosis from three medical centers. CNNs were used to extract features from full-spine coronal X-ray images taken at three follow-up points for each patient. Imaging and clinical features from center 1 were analyzed using the Boruta algorithm to identify independent predictors. Data from center 1 were divided into training (80%) and testing (20%) sets, while data from centers 2 and 3 were used as external validation sets. Six machine learning models were constructed. Receiver operating characteristic (ROC) curves were plotted, and model performance was assessed by calculating the area under the curve (AUC), accuracy, sensitivity, and specificity in the training, testing, and external validation sets. The SHAP interpreter was used to analyze the most effective model.

Results: The six models yielded AUCs ranging from 0.565 to 0.989, accuracies from 0.600 to 0.968, sensitivities from 0.625 to 1.0, and specificities from 0.571 to 0.974. The XGBoost model achieved the best performance, with an AUC of 0.896 in the external validation set. SHAP analysis identified the change in the main Cobb angle between the second and first follow-ups [Cobb1(2−1)] as the most important predictor, followed by the main Cobb angle at the second follow-up (Cobb1-2) and the change in the secondary Cobb angle [Cobb2(2−1)].

Conclusion: The XGBoost model demonstrated the best predictive performance in the external validation cohort, confirming its preliminary stability and generalizability. SHAP analysis indicated that Cobb1(2−1) was the most important feature for predicting scoliosis progression. This model offers a valuable tool for clinical decision-making by enabling early identification of high-risk patients and supporting early intervention strategies through automated feature extraction and interpretable analysis.

Supplementary Information: The online version contains supplementary material available at 10.1186/s12891-025-08841-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231996PMC
http://dx.doi.org/10.1186/s12891-025-08841-3DOI Listing

Publication Analysis

Top Keywords

external validation
16
adolescent idiopathic
12
idiopathic scoliosis
12
machine learning
12
cobb angle
12
learning models
8
validation sets
8
xgboost model
8
shap analysis
8
main cobb
8

Similar Publications