Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As DNA variants accumulate in somatic stem cells, become selected or evolve neutrally, they may ultimately alter tissue function. When, and how, selection occurs in homeostatic tissues is incompletely understood. Here, we introduce SCIFER, a scalable method that identifies selection in an individual tissue, without requiring knowledge of the driver event. SCIFER also infers self-renewal and mutation dynamics of the tissue's stem cells, and the size and age of selected clones. Probing bulk whole-genome sequencing data of nonmalignant human bone marrow and brain, we detected pervasive selection in both tissues. Selected clones in hematopoiesis, with or without known drivers, were initiated uniformly across life. In the brain, we found pre-malignant clones with glioma-initiating mutations and clones without known drivers. In contrast to hematopoiesis, selected clones in the brain originated preferentially from childhood to young adulthood. SCIFER is broadly applicable to renewing somatic tissues to detect and quantify selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12283403PMC
http://dx.doi.org/10.1038/s41588-025-02217-yDOI Listing

Publication Analysis

Top Keywords

stem cells
12
selected clones
12
somatic stem
8
selection
5
clones
5
detecting quantifying
4
quantifying clonal
4
clonal selection
4
selection somatic
4
cells dna
4

Similar Publications

Protocol for constructing an accessible exposure chamber for in vitro and in vivo modeling of airway environmental exposures.

STAR Protoc

September 2025

UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; UCLA Environmental and Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA

Exposure systems to study the effects of environmental exposures can be costly to purchase and difficult to use. Here, we present an accessible and cost-effective approach to building an exposure chamber in the lab. We describe steps for constructing the exposure system and writing the code to run it and simple instructions for experiments using the system.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF