Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large language models (LLMs) have shown promise in science, such as structure-property prediction and acting as AI agents, yet their intrinsic knowledge and reasoning capability for scientific discovery remains underexplored. We introduce LLM-EO, an integration of LLMs into evolutionary optimization, and demonstrate its success in optimizing transition metal complexes (TMCs). LLM-EO demonstrates advantages in few-sample learning due to the intrinsic chemical knowledge embedded within LLMs and their ability to leverage entire historical data collected during optimizations. Through natural language instructions, LLM-EO offers enhanced accessibility for multiobjective optimizations, potentially lowering barriers for experimental chemists without extensive programming expertise. As generative models, LLM-EO possesses the capability to propose novel ligands and TMCs with unique chemical properties by amalgamating both internal knowledge and external chemistry data, thus combining the benefits of efficient optimization and generation. With advancements in LLMs, both in their capacity as pretrained foundational models and new strategies in post-training inference, we anticipate broad applications of LLM-EO in chemistry and materials design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c02097DOI Listing

Publication Analysis

Top Keywords

metal complexes
8
internal knowledge
8
knowledge reasoning
8
reasoning capability
8
large language
8
language models
8
llm-eo
5
generative design
4
design functional
4
functional metal
4

Similar Publications

In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.

View Article and Find Full Text PDF

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

Synthesis and Reactivity of a Crystalline Zinc-cAAC Radical.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Organic Synthesis of Jiangsu Province & State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.

Reaction of LZnI [L = BuC(N-DIPP), DIPP = 2,6-Pr-CH] with KC in the presence of cyclic (alkyl)(amino)carbene (cAAC) affords a stable radical complex [LZn(cAAC)] (3). Single-crystal structural analysis of 3 shows a short Zn─C bond and concomitant elongation of C─N bond within the cAAC ligand, indicating a significant π-backbonding from the metal to the cAAC ligand. EPR spectroscopy and DFT calculations reveal that the spin density is mainly localized on the carbenic carbon atom, with a small portion on the zinc center.

View Article and Find Full Text PDF

Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.

View Article and Find Full Text PDF

Allyl sulfones are common motifs in many drugs and natural products, exhibiting a wide range of biological activities such as anticancer and antibacterial properties, etc. An overview is provided on the synthesis of allylic sulfones via generation of metal π-allyl complexes in metal-catalyzed sulfonylation over the period from 2020 to the present. The generation process of metal π-allyl complexes is introduced from the perspective of reaction mechanism and the reaction processes such as nucleophilic substitution, insertion of SO, and reductive elimination involving metal π-allyl complexes is discussed.

View Article and Find Full Text PDF