Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the mechanical and viscoelastic properties of TC-85, a biocompatible material specifically designed for orthodontic applications, with a focus on how temperature variations influence its mechanical and viscoelastic properties and their relevance to clinical outcomes. Using a Digital Light Processing (DLP) 3D printer, the photosensitive resin TC-85 is printed, and extensive thermo-mechanical testing is conducted, which includes evaluations of tensile modulus, stress relaxation, and creep behavior. Dynamic Mechanical Analysis (DMA) is conducted at temperatures varying from 30 to 45 °C to assess the material's adaptive response to thermal fluctuations. TC-85 is distinguished by its unique mechanical properties, which include a temperature-sensitive stiffness, stress relaxation capability, and shape memory feature. The results demonstrate that TC-85 maintains an enhanced level of residual force and a faster recovery of strain through numerous cycles of loading and unloading. At 40 °C, TC-85 displays a substantial reduction in its storage modulus, while maintaining consistent strain recovery and volumetric constancy. The study highlights TC-85's potential in orthodontic treatments, providing adaptable mechanical and viscoelastic properties that enable the exertion of consistent and regulated forces on teeth. Its resistance to force decay, stable volume at raised temperatures, and shape memory properties enhance hygienic maintenance and patient comfort, positioning TC-85 as a pioneering material for the next generation of clear aligners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12223219PMC
http://dx.doi.org/10.1038/s41598-025-93026-0DOI Listing

Publication Analysis

Top Keywords

mechanical viscoelastic
16
viscoelastic properties
16
clear aligners
8
stress relaxation
8
shape memory
8
mechanical
6
properties
6
tc-85
6
properties temperature-responsive
4
temperature-responsive photocurable
4

Similar Publications

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Short-Time Relaxation and Anomalous Diffusion in Dynamic Covalent Networks.

ACS Macro Lett

September 2025

Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.

Introducing dynamic covalent chemistries into polymer networks allows access to complex linear viscoelasticity, owing to the reversible nature of the dynamic bonds. While this macroscopic mechanical behavior is influenced by the dynamic exchange of these chemistries, connecting the microscopic dynamics to the bulk properties is hindered by the time scale conventional techniques can observe. Here, light scattering passive microrheology is applied to probe short-time dynamics of dynamic covalent networks that consist of telechelic benzalcyanoacetate (BCA) Michael acceptors and thiol-functionalized cross-linkers.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Kinetic Locking of pH-Sensitive Complexes for Mechanically Responsive Polymer Networks.

J Am Chem Soc

September 2025

Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Achieving sensitive and reversible responsivity over physiologically relevant pH ranges (4.5-7.5) remains of great interest for the design of next-generation autonomous drug delivery devices.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF