Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mast cells (MC) serve as pivotal sentinels in the regulation of immune responses and inflammation, yet their function in lung adenocarcinoma (LUAD) remains largely neglected. To decode their heterogeneity, we perform single-cell transcriptomic analysis of LUAD-infiltrating MCs. Our study uncovers the complexity in MC composition and identifies 9 distinct states, including proinflammation, chemotaxis, and antigen presentation. The proinflammatory MC subset, characterized by high IL-18 expression, is associated with improved outcomes for LUAD patients. This pro-inflammatory property is regulated by the activation of NLRP3 inflammasome within MCs, resulting in the formation of GSDMD pores and successive pyroptosis. Moreover, these MCs enhance the innate-like anti-tumor activity of MAIT cells by upregulating NKG2D and IFN-γ through the cytokine-activation mechanism. Our results uncover an unappreciated state of MCs and describe an inflammasome-dependent, MC-mediated regulation of MAIT cells in LUAD. These findings diversify our understanding of the functional repertoire and mechanistic equipment of MCs and MAIT cells, and suggest a potential therapeutic target for cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222788PMC
http://dx.doi.org/10.1038/s41467-025-61324-wDOI Listing

Publication Analysis

Top Keywords

mait cells
16
mast cells
8
cells
5
mcs
5
cells boost
4
boost anti-tumor
4
anti-tumor potency
4
mait
4
potency mait
4
cells inflammasome-dependent
4

Similar Publications

Tissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.

View Article and Find Full Text PDF

Tissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.

View Article and Find Full Text PDF

Exploring the role of unconventional T cells in rheumatoid arthritis.

Front Immunol

September 2025

Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by sustained synovial inflammation and the gradual destruction of joint structures. Although conventional T cells have historically been viewed as central to RA pathogenesis, increasing attention has recently focused on unconventional T cell subsets, such as natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and gamma delta T (γδ T) cells. Functioning as a bridge between innate and adaptive immunity, these cells contribute to RA immunopathogenesis by producing cytokines, exerting cytotoxic effects, and interacting with various immune and stromal cells.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells play a vital role in immune responses, yet their involvement in autoimmune diseases such as Sjögren's disease (SjD) remains unclear. CD55, a key regulator of complement activation, influences immune cell function. This study investigates CD55 expression on MAIT cells in SjD patients and healthy controls, evaluating its potential as a diagnostic marker.

View Article and Find Full Text PDF

Human C-type lectin-like molecule CD161 is a type II transmembrane protein expressed on the surface of various lymphocytes within both the innate and adaptive immune systems. CD161 serves as a marker for innate-like T cells and IL-17-producing cells. However, the meaning of these T cells expressing CD161 has not yet been fully determined.

View Article and Find Full Text PDF