98%
921
2 minutes
20
Accurate prediction of compound-protein interactions (CPI) remains a cornerstone challenge in computational drug discovery. While existing sequence-based approaches leverage molecular fingerprints or graph representations, they critically overlook the three-dimensional (3D) structural determinants of binding affinity. To bridge this gap, we present EquiCPI, an end-to-end geometric deep learning framework that synergizes first-principles structural modeling with SE(3)-equivariant neural networks. Our pipeline transforms raw sequences into 3D atomic coordinates via ESMFold for proteins and DiffDock-L for ligands, followed by physics-guided conformer reranking and equivariant feature learning. At its core, EquiCPI employs SE(3)-equivariant message passing over atomic point clouds, preserving symmetry under rotations, translations, and reflections, while hierarchically encoding local interaction patterns through tensor products of spherical harmonics. The proposed model is evaluated on BindingDB (affinity prediction) and DUD-E (virtual screening). EquiCPI achieves performance on par with or exceeding the state-of-the-art deep learning competitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.5c00773 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
Eur J Radiol
September 2025
Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China. Electronic address:
Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.
Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDF