98%
921
2 minutes
20
Background: Tibetan pigs, which have long inhabited the Qinghai-Tibet Plateau at elevations exceeding 3000 m, serve as an ideal model for studying adaptation to extreme high-altitude environments. The multifunctionality of the liver (hematopoiesis, metabolism, detoxification) plays a crucial role in the adaptation of Tibetan pigs to hypoxic and cold environments, yet the specific mechanisms remain unclear.
Results: This study employed single-nucleus RNA sequencing to profile and conduct bioinformatic analyses on the liver tissues of Diqing Tibetan pigs across 5 developmental stages (embryonic day 25, embryonic day 55, day of birth, development to 30 days, and development to 90 days). The goal was to identify and investigate key cell types and the regulatory mechanisms of core gene expression that facilitate adaptation to hypoxia and cold. In the fetal liver, various subpopulations of erythrocytes were detected. Analysis of these subpopulations allowed for the construction of a cellular development trajectory from proliferative erythrocytes to division erythrocytes to denucleating erythrocytes, revealing that key transcription factors (JUNB and MAFF) and functional genes (HBP1 and PPP2CB) play significant roles in erythrocyte enucleation. Furthermore, the presence of hematopoietic stem cells in the postnatal liver was observed, with identification of subpopulations exhibiting myeloid differentiation tendencies. These cells continuously support hematopoiesis and facilitate new blood vessel formation, thereby increasing red blood cell counts to aid in the adaptation of Diqing Tibetan pigs to hypoxic conditions. Additionally, a class of hepatocytes capable of converting metabolic energy into heat through uncoupling processes was identified, which assists in the adaptation to the cold environments of the plateau.
Conclusions: In summary, our study provides new scientific perspectives on the adaptation mechanisms of high-altitude animals to extreme environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218016 | PMC |
http://dx.doi.org/10.1186/s12915-025-02281-0 | DOI Listing |
Animals (Basel)
August 2025
Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
This study aimed to evaluate the impacts of dietary inclusion of citrus pomace on growth performance, intestinal morphology, digestive enzyme activity, antioxidant status, and colonic microbiota in Tibetan pigs in a 90-day feeding trial. Eighty Tibetan pigs (75-day-age, 16.62 ± 1.
View Article and Find Full Text PDFMetabolites
August 2025
College of Animal Science, Xizang Agriculture and Animal Husbandry University, Linzhi 860000, China.
The aim of this study was to explore the effects of diets with different protein levels on the metabolite composition and metabolic pathways of the longest dorsal muscle of Tibetan pigs, in order to provide a metabolic basis for optimizing the nutritional regulation strategy of Tibetan pigs. A total of 32 healthy 180-day-old depopulated male Tibetan pigs were randomly divided into four groups and fed diets with protein levels of 10%, 12%, 14%, and 16%, respectively, with a feeding cycle of 8 weeks. The longest dorsal muscle samples were collected, and their metabolic profiles were systematically analyzed by LC-MS non-targeted metabolomics.
View Article and Find Full Text PDFAnimals (Basel)
July 2025
College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
Although age-related changes in the gut microbiome of pigs have been extensively studied, the dynamic patterns of fecal microbiota and SCFAs during the gestation-to-weaning period in sows remain poorly characterized. We aim to characterize the changes in fecal microbiota and SCFAs from pregnancy to weaning, and to investigate their associations with maternal weight gain during gestation. We systematically collected 100 fecal samples at four time points (day 30 of pregnancy (T1), 1-2 days before delivery (T2), day 10 after delivery (T3), and day 21 of weaning stage (T3)), and measured the body weight of sows at T1 (132 kg ± 10.
View Article and Find Full Text PDFBMC Genomics
August 2025
Hunan Agricultural University & Yuelushan Laboratory & Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, 410128, China.
Background: Growth retardation is a globally prevalent clinical issue, particularly in preterm offspring. It frequently occurs during the early postnatal development of piglets and results in high mortality. In addition to slow postnatal growth caused by complications from immature organs, these offspring are also at risk of facing significant long-term health challenges in adulthood.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
August 2025
Hunan Agricultural University & Yuelushan Laboratory & Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, PR China.
Uncovering the mechanisms of excessive fat accumulation in livestock can not only protect animal health but also maintain the revenue of the intensive feeding industry. In this study, a bacteria-wide association study was conducted in a cohort of 129 commercial Yorkshire pigs. We found that Phascolarctobacterium succinatutens (P.
View Article and Find Full Text PDF