Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Deep learning image reconstruction (DLIR) technology effectively improves the image quality while maintaining spatial resolution. The impact of DLIR on the quantification of coronary artery calcium (CAC) is still unclear. The purpose of this study was to investigate the effect of DLIR on the quantification of coronary calcium in high-risk populations.

Methods: A retrospective study was conducted on patients who underwent coronary artery CT angiography (CCTA) at our hospital(China) from February 2022 to September 2022. Raw data were reconstructed with filtered back projection (FBP) reconstruction, 40% and 80% level adaptive statistical iterative reconstruction-veo (ASiR-V 40%, ASiR-V 80%) and low, medium and high-level deep learning algorithm (DLIR-L, DLIR-M, and DLIR-H). Calculate and compare the signal-to-noise and contrast-to-noise ratio, volumetric score, mass scores, and Agaston score of 6 sets of images.

Results: There were 178 patients, female (107), mean age (62.43 ± 9.26), and mean BMI (25.33 ± 3.18) kg/m. Compared with FBP, the image noise of ASiR-V and DLIR was significantly reduced (P < 0.001). There was no significant difference in Agaston score, volumetric score, and mass scores among the six reconstruction algorithms (all P > 0.05). Bland-Altman diagram indicated that the Agatston scores of the five reconstruction algorithms showed good agreement with FBP, with DLIR-L(AUC, 110.08; 95% CI: 26.48, 432.92;)and ASIR-V40% (AUC,110.96; 95% CI: 26.23, 431.34;) having the highest consistency with FBP.

Conclusion: Compared with FBP, DLIR and ASiR-V improve CT image quality to varying degrees while having no impact on Agatston score-based risk stratification.

Clinical Relevance Statement: CACS is a powerful tool for cardiovascular risk stratification, and DLIR can improve image quality without affecting CACS, making it widely applicable in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210892PMC
http://dx.doi.org/10.1186/s12911-025-03049-wDOI Listing

Publication Analysis

Top Keywords

deep learning
12
coronary artery
12
image quality
12
learning image
8
image reconstruction
8
adaptive statistical
8
statistical iterative
8
artery calcium
8
dlir quantification
8
quantification coronary
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

SPACE: STRING proteins as complementary embeddings.

Bioinformatics

September 2025

Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.

Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.

Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF