98%
921
2 minutes
20
Panic is an episode of strong defensive state, characterized by intense fear and severe physical symptoms such as elevated cardiorespiratory activities. How the brain generates panic state remains poorly understood. Here, we developed a robot-based experimental paradigm to evoke panic-like defensive state in mice. When stimulated by the robot, mice exhibited jumping escapes and elevated cardiorespiratory activities. With this paradigm, we identified Cbln2-expressing (Cbln2+) neurons in the posterior hypothalamic nucleus (PHN) as a key neuronal population essential for the induction of panic-like defensive state. Activation of Cbln2+ PHN neurons induced behavioral and physical symptoms of panic-like defensive state. These neurons were strongly activated by noxious mechanical stimuli and encode jumping escape vigor. They were synaptically innervated by anxiety-associated brain areas and provoked panic-like defensive state via their projection to the periaqueductal gray. Together, our results reveal a molecularly defined circuit module that regulates the panic-like defensive state in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216190 | PMC |
http://dx.doi.org/10.1038/s41467-025-60529-3 | DOI Listing |
Nat Microbiol
September 2025
Division of Computational Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.
View Article and Find Full Text PDFArch Toxicol
September 2025
Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, Oslo, Norway.
The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
AJNR Am J Neuroradiol
September 2025
From the Department of Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.
View Article and Find Full Text PDF