A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Low-temperature sequential deposition for efficient inverted perovskite solar cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inverted perovskite solar cell has made significant progress in recent years. Although two-step sequential deposition shows the benefits to obtain higher quality large-size perovskite crystals, the high annealing temperature, which is required to achieve phase transition, leads to the desorption of self-assembled molecules at the buried interface and induces redundant lead iodide at the top interface. Here, we propose a low temperature sequential deposition method by introduce a tailor-made 3-ethyl-1-methyl-1H-imidazol-3-ium dimethyl phosphate into lead iodide precursor solution to facilitate the sufficient reaction between lead iodide and organic salts, and lower the energy barrier from delta- to alpha-perovskite. As a result, highly crystallized and pure alpha-phase perovskite films with large grain size are fabricated, preventing the damage to buried self-assembled molecules and the formation of redundant lead iodide, which contributes to a high open circuit voltage of 1.21 V and a certified efficiency of 26.0%. The encapsulated devices show improved stability following ISOS-D-3 and ISOS-L-2 protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214784PMC
http://dx.doi.org/10.1038/s41467-025-61144-yDOI Listing

Publication Analysis

Top Keywords

lead iodide
16
sequential deposition
12
inverted perovskite
8
perovskite solar
8
self-assembled molecules
8
redundant lead
8
low-temperature sequential
4
deposition efficient
4
efficient inverted
4
perovskite
4

Similar Publications