Advanced research and exploration of CRISPR technology in the field of directed evolution.

Biotechnol Adv

College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Directed molecular evolution is the key technology for obtaining enzymes, proteins, metabolic pathways, and other components of living organisms that have specific functions or desirable properties, which are indispensable in a variety of industrial and medical applications. Despite the success of traditional methods, they are often limited by low efficiency and the high cost of obtaining desired mutants. The advent of CRISPR technology has significantly advanced the field by enabling precise and efficient gene targeting, offering new prospects for directed evolution. This review provides a comprehensive overview of CRISPR tools and their applications in directed evolution, highlighting the principles, technological advancements, and specific applications of CRISPR-based mutation and screening platforms. We discuss the key findings from the use of CRISPR in enzyme and genome evolution, showcasing its ability to generate genetic diversity and select for improved phenotypes. The study underscores the unique value of CRISPR in directed evolution, particularly in its flexibility to target and edit various species' genomes, and its potential to accelerate the discovery of novel biomolecules with enhanced properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2025.108633DOI Listing

Publication Analysis

Top Keywords

directed evolution
16
crispr technology
8
evolution
6
crispr
5
directed
5
advanced exploration
4
exploration crispr
4
technology field
4
field directed
4
evolution directed
4

Similar Publications

Acetylesterase, produced by , plays a crucial role in deacetylating hemicellulose during pulp production. Thermostable variants of this enzyme, although rare, can significantly enhance industrial efficiency by retaining activity at high temperatures. This research aims to design a thermostable variant of acetylesterase from (EC 3.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Foodborne illness is a critical food safety and public health concern, often resulting from contamination events by resident pathogens in food processing environments (FPEs). , the causative agent of listeriosis, can persist in FPEs over long time periods. Despite rigorous research on the phenotypic and genotypic traits of , no clear pattern has arisen to explain why some strains are able to persist.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF

Engineering Noncanonical Cofactors To Expand Cellular Functions.

ACS Synth Biol

September 2025

Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.

Synthetic biology often employs heterologous enzymatic reactions to reprogram cell metabolism or otherwise introduce novel functions. However, precise control of a particular metabolic pathway can be difficult to achieve because cofactors are shared with endogenous enzymes from a common pool. Recently, the use of noncanonical cofactors (NCCs) has emerged as a promising approach to bypass this problem by isolating desired reactions without the need for a physical barrier.

View Article and Find Full Text PDF