98%
921
2 minutes
20
Background: Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful tool for cancer research, enabling in-depth characterization of tumor heterogeneity at the single-cell level. Recently, several scRNA-seq copy number variation (scCNV) inference methods have been developed, expanding the application of scRNA-seq to study genetic heterogeneity in cancer using transcriptomic data. However, the fidelity of these methods has not been investigated systematically.
Methods: We benchmarked five commonly used scCNV inference methods: HoneyBADGER, CopyKAT, CaSpER, inferCNV, and sciCNV. We evaluated their performance across four different scRNA-seq platforms using data from our previous multicenter study. We evaluated scCNV performance further using scRNA-seq datasets derived from mixed samples consisting of five human lung adenocarcinoma cell lines and also sequenced tissues from a small cell lung cancer patient and used the data to validate our findings with a clinical scRNA-seq dataset.
Results: We found that the sensitivity and specificity of the five scCNV inference methods varied, depending on the selection of reference data, sequencing depth, and read length. CopyKAT and CaSpER outperformed other methods overall, while inferCNV, sciCNV, and CopyKAT performed better than other methods in subclone identification. We found that batch effects significantly affected the performance of subclone identification in mixed datasets in most methods we tested.
Conclusion: Our benchmarking study revealed the strengths and weaknesses of each of these scCNV inference methods and provided guidance for selecting the optimal CNV inference method using scRNA-seq data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204187 | PMC |
http://dx.doi.org/10.1093/pcmedi/pbaf011 | DOI Listing |
Cereb Cortex
August 2025
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.
View Article and Find Full Text PDFCereb Cortex
August 2025
The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), 2006 Xiyuan Avenue, West Hi Tech Zone, 611731, Chengdu, China.
This commentary reflects three decades of interaction between the Cuban neuroinformatics tradition and the statistical parametric mapping (SPM) framework. From the early development of neurometrics in Cuba to global initiatives like the Global Brain Consortium, our trajectory has paralleled and intersected with that of SPM. We highlight shared commitments to generative modeling, Bayesian inference, and population-level brain mapping, as shaped through collaborations, workshops, and joint theoretical work with Karl Friston and his group.
View Article and Find Full Text PDFCereb Cortex
August 2025
Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
Statistical Parametric Mapping (SPM) is a statistical framework and open source software package for neuroimaging data analysis. Originally created by Karl Friston in the early 1990s, it has been used by a vast number of scientific studies over the last three decades. SPM has not only revolutionized the analysis of neuroimaging data but also catalyzed the development of cognitive neuroscience.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section on Functional Imaging Methods & Functional MRI Core Facility, National Institute of Mental Health, 10 Center Drive, Rm 1D80, Bethesda, MD 20892, United States.
Statistical Parametric Mapping (SPM) has been profoundly influential to neuroimaging as it has fostered rigorous, statistically grounded structure for model-based inferences that have led to mechanistic insights about the human brain over the past 30 years. The statistical constructs shared with the world through SPM have been instrumental for deriving meaning from neuroimaging data; however, they require simplifying assumptions which can provide results that, while statistically sound, may not accurately reflect the mechanisms of brain function. A platform that fosters the exploration of the rich and varying neuronal and physiologic underpinnings of the measured signals and their associations to behavior and physiologic measures needs a different set of tools.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.