98%
921
2 minutes
20
Breast cancer is the most commonly occurring cancer among women with high mortality. Identifying effective anticancer compounds to improve the overall survival is imperative. The present study was designed to evaluate the effects and underlying mechanisms of Scutebarbatine B (SBT-B), a diterpenoid alkaloid extracted from Scutellaria barbata D. Don ( S. barbata ), on breast cancer. Cell viability assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, immunofluorescence, flow cytometry analysis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, Western blot analysis, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and dihydroethidium (DHE) staining were performed to elucidate the anticancer mechanisms of SBT-B in vitro. Mice xenograft models were used to assess the anticancer properties in vivo. We demonstrated that SBT-B suppressed the proliferation of breast cancer cells in a dose-dependent manner. SBT-B treatment induced DNA damage response, G2/M phase arrest and downregulated the expression of cyclinB1, cyclinD1, Cdc2, and p-Cdc2. SBT-B could trigger apoptosis through increasing the cleavage of caspase-8, caspase-9 and PARP in breast cancer cells. Additionally, SBT-B elevated the generation of intracellular reactive oxygen species (ROS). Treatment with a ROS scavenger N-acetyl cysteine (NAC) partially blocked viability reduction and cleavage of caspase-8 and PARP induced by SBT-B. Moreover, SBT-B blocked pRB/E2F1 and Akt/mTOR pathways. Incubation with SBT-B increased the expression of IRE1 and phospho-JNK. In vivo, SBT-B exhibited significant suppression of tumor growth in xenograft models. We demonstrate firstly that SBT-B induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells. ROS generation, suppression of oncogenic signaling and activation of IRE1/JNK pathway play an essential role in the anticancer activity of SBT-B. Our study highlights the potential of SBT-B as an alternative candidate to treat human breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.70007 | DOI Listing |
Mol Cancer Ther
September 2025
Case Western Reserve University School of Medicine, Cleveland, OH, United States.
The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.
View Article and Find Full Text PDFJ Med Chem
September 2025
Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.
View Article and Find Full Text PDFJ Am Acad Audiol
September 2025
Paraneoplastic cerebellar degeneration (PCD) is a rare neurological disorder caused by tumor-mediated antibodies targeting the cerebellum, often leading to irreversible cerebellar damage. The most common antibody implicated in PCD is anti-Purkinje cell cytoplasmic antibody type-1, associated with malignancies such as breast, gynecological, and lung cancers. Symptoms often include dizziness, imbalance, progressive ataxia, and other cerebellar signs/symptoms, but early presentations may mimic acute vestibular syndrome, thus complicating diagnosis.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.