Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interactions between cells and the extracellular matrix are essential regulators of cell behaviors such as adhesion, proliferation, migration, differentiation, and function. From the perspective of tissue regeneration, some physicochemical characteristics of the material, including hydrophilicity, topology, and charge of the material surface, can significantly affect cell adhesion, proliferation, and differentiation. Many biomaterials are introduced for tissue engineering scaffolds, biomimicking natural tissues. Among the biomaterials, silk proteins (fibroin and sericin) have many excellent characteristics, making them ideal candidates for regenerative medicine. Several studies have tuned silk fibroin characteristics to specify cell adhesion, proliferation, and stem cell differentiation by combining fibroin with other materials, coating, modification, and biofunctionalization. In the current review article, the essential properties of silk fibroin-based scaffolds (presence of cell adhesion motifs, wettability, charge, elasticity) and their influences on cell adhesion, proliferation, and migration, as well as their biodegradation and the body's immune response are discussed. In addition, the crosstalk between silk fibroin and various cells is discussed, as well as different methods for blending or biofunctionalization of silk fibroin with the aim of engineering a silk-based scaffold with a specifically tuned response to biological systems and subsequently affecting the behavior of the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.202400629DOI Listing

Publication Analysis

Top Keywords

adhesion proliferation
16
cell adhesion
16
silk fibroin
12
silk fibroin-based
8
tissue regeneration
8
proliferation migration
8
cell
7
silk
6
adhesion
5
fibroin
5

Similar Publications

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF

The short lifespan of polymorphonuclear neutrophils (PMNs) in vitro poses challenges, as their limited viability restricts functional assays and experimental manipulations. The HL-60 cell line serves as a valuable model for neutrophil-like differentiation, yet the functional relevance of ATRA- and DMSO-induced differentiation remains incompletely understood. In the present study, we aimed to characterize the differentiation potential of all-trans retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) on HL-60 cells and compare their functionality with primary PMNs.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.

View Article and Find Full Text PDF