98%
921
2 minutes
20
This study investigated the effects of stepwise external voltages on an electrochemical anaerobic dynamic membrane bioreactor (EC-AnDMBR) for anaerobic digestion of waste activated sludge. Increasing the applied voltage greatly mitigated membrane fouling, reduced the transmembrane pressure increase rate and enhanced both volatile solids digestion and biogas production. The dynamic membrane structure became looser with fewer biofouling substances, attributed to a 42.6 % increase in the sludge-membrane interaction energy barrier at higher voltages. Electrochemical analysis revealed improved electroactivity of the anaerobic sludge, as evidenced by increased conductivity and reduced internal resistance. The proton-coupled electron transfer (PCET) pathway was promoted, indicated by a significant increase in the hydrogen/deuterium kinetic isotope effect from 616 to 25,990. Molecular simulations of dissolved organic matter (DOM) showed an enrichment of amide and quinone groups, along with stronger hydrogen-bonding and π-cation interactions, which may contribute to the PCET process. Moreover, elevated voltages promoted more deterministic microbial community assembly and reduced upstream microbial immigration. Gene upregulation in organic metabolism, electron/proton transport, and methanogenesis further supported enhanced digestion performance via PCET pathway. These findings offer valuable insights into the molecular mechanisms and microbial ecology of EC-AnDMBR systems, advancing the development of more efficient and sustainable sludge treatment technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2025.124080 | DOI Listing |
J Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Cell and Systems Biology Program, Hospital for Sick Children, Toronto, Canada.
Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFChem Rec
September 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, M. P., 462066, India.
Flow fields (FFs) play multifaceted roles in direct methanol fuel cells (DMFC) by facilitating the transport and distribution of species, removal of products, support to the membrane electrode assembly (MEA), electrical conductivity, water, and thermal management. Therefore, the performance of DMFC is directly related to the pattern and geometry of the FF. DMFCs can generate power density of up to ≈100-300 mW cm; however, their performance is impeded by cathode flooding, CO gas bubbles formation, and mass transfer limitations.
View Article and Find Full Text PDF