98%
921
2 minutes
20
Meristems are major determinants of plant architecture, diversification, and acclimation to environmental stresses. Moreover, meristems play also a major role during crop domestication and are fundamentally important for the productivity of crop plants as they directly determine biomass and grain yield. While vegetative meristems shape the basic plant body plan and produce all above- and below-ground parts of plants, some vegetative meristems transit to reproductive meristems, forming sexual organs and germ cells. Most knowledge about plant meristems was generated using the model plant Arabidopsis. Compared with Arabidopsis, architecture of grass or cereals, including crops like maize, wheat, barley, rice and sorghum, is more complex: cereals produce additional organs like a coleoptile, seminal roots originating from the scutellar nodes in the embryo and shoot-borne crown roots as well as highly complex inflorescence meristems with meristem types absent in eudicots. Moreover, studies in cereals indicated that paradigms based on studies using Arabidopsis are not universally applicable. This review therefore aims to provide a comprehensive overview about the initiation, establishment, maintenance, and function of the various cereal meristems and their stem cell niches that shape our most important crop plants. Stem cell-like systems involved in leaf pattering and germline formation are also considered. The focus is also on the significant progress that has been made recently using novel tools to elucidate gene regulatory networks underlying the development and function of the various cereal meristems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290889 | PMC |
http://dx.doi.org/10.1093/plcell/koaf150 | DOI Listing |
Physiol Plant
September 2025
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.
Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.
View Article and Find Full Text PDFPlant Sci
September 2025
Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México D.F 04510, Mexico. Electronic address:
Epigenetic regulation by Polycomb Group (PcG) is essential for controlling gene repression. In plants, PcG is involved in all developmental processes, from embryogenesis to floral development, including root development. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) has been described as a PcG component, capable of recognizing the H3K27me3 mark, that together with CLF, a PcG histone methyltransferase, represses gene expression.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada.
This article presents a novel perspective on plant embryogenesis, fundamentally differentiating it from the animal embryo model upon which plant models have long been based to discern the genetic and molecular mechanisms. We propose a plant embryonic body plan that aligns developmental and evolutionary insights across all five embryophyte groups (bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms). This conceptual model is grounded in a Reprogramming Potential (RP) involving an activation (RP1+) -suppression (RP1-) switch (RP1+/RP1-), which integrates embryonic development in a stepwise manner across diverse embryophytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Panicle architecture is largely determined by meristem activity. This previous study shows that DNA binding with one finger (Dof) transcription factor Short Panicle 3 (SP3) regulates panicle architecture. However, the molecular mechanisms of SP3 controlling panicle architecture remain largely unknown.
View Article and Find Full Text PDF