Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise estimation of treatment effects is crucial for accurately evaluating the intervention. While deep learning models have exhibited promising performance in learning counterfactual representations for treatment effect estimation (TEE), a major limitation in most of these models is that they often overlook the diversity of treatment effects across potential subgroups that have varying treatment effects and characteristics, treating the entire population as a homogeneous group. This limitation restricts the ability to precisely estimate treatment effects and provide targeted treatment recommendations. In this paper, we propose a novel treatment effect estimation model, named SubgroupTE, which incorporates subgroup identification in TEE. SubgroupTE identifies heterogeneous subgroups with different responses and more precisely estimates treatment effects by considering subgroup-specific treatment effects in the estimation process. In addition, we introduce an expectation-maximization (EM)-based training process that iteratively optimizes estimation and subgrouping networks to improve both estimation and subgroup identification. Comprehensive experiments on the synthetic and semi-synthetic datasets demonstrate the outstanding performance of SubgroupTE compared to the existing works for treatment effect estimation and subgrouping models. Additionally, a real-world study demonstrates the capabilities of SubgroupTE in enhancing targeted treatment recommendations for patients with opioid use disorder (OUD) by incorporating subgroup identification with treatment effect estimation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199269PMC
http://dx.doi.org/10.1145/3718097DOI Listing

Publication Analysis

Top Keywords

treatment effects
24
treatment estimation
20
subgroup identification
16
treatment
13
estimation
9
estimation subgroup
8
targeted treatment
8
treatment recommendations
8
estimation subgrouping
8
effects
6

Similar Publications

Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.

Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.

View Article and Find Full Text PDF

Medical cannabis legalization and the use of illicit drugs, alcohol, and tobacco.

J Cannabis Res

September 2025

Department of EconomicsMA in Applied Economics, Lebanese American University, P.O. Box: 13-5053, Beirut, Lebanon.

Amidst the global shift toward cannabis legalization, this study examines medical cannabis (MC) sales as an indicator of economic activity and innovation. It explores associations between MC sales, and variables including tobacco use, alcohol consumption, amphetamine, cocaine and cannabis prevalence, and gross domestic product (GDP), using a fixed effects (FE) panel regression model. It also evaluates associations between cannabis legalization and MC sales over time using a dynamic Difference-in-Differences (DiD) approach with multiple time periods.

View Article and Find Full Text PDF

Background: Recreational nitrous oxide (NO) abuse has become increasingly prevalent, raising concerns about associated health risks. In Germany, the lack of reliable data on NO consumption patterns limits the development of effective public health interventions. This study aims to address this knowledge gap by examining trends, determinants, and health consequences of NO abuse in Germany.

View Article and Find Full Text PDF