RFID-Based Real-Time Salt Concentration Monitoring with Adaptive EKF.

Sensors (Basel)

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salt concentration monitoring is crucial for industrial process control and wastewater management, yet existing methods often lack real-time capability or require invasive sampling. This paper presents a novel RFID wireless sensing system for noninvasive solution concentration monitoring, combining physical modeling with advanced estimation algorithms. By combining the Cole-Cole model and the slit cylindrical capacitor (SCC) model, the system establishes physics-based state-space models to characterize concentration-dependent RFID signal variations. The concentration dynamics are modeled as a hidden Markov process and tracked using an adaptive extended Kalman filter (AEKF). The AEKF algorithm avoids computationally expensive inversion of complex observation equations while automatically adjusting noise covariance matrices via innovation sequence. Experimental results demonstrate a mean relative error (MRE) of 2.8% for CaCl solution across 2-10 g/L concentrations. Within the experimentally validated optimal range (2-8 g/L CaCl), the system maintains MRE below 3% under artificially introduced measurement noise, confirming its strong robustness. Compared with baseline approaches, the proposed AEKF algorithm shows improved performance in both accuracy and computational efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196897PMC
http://dx.doi.org/10.3390/s25123826DOI Listing

Publication Analysis

Top Keywords

concentration monitoring
12
salt concentration
8
aekf algorithm
8
rfid-based real-time
4
real-time salt
4
concentration
4
monitoring adaptive
4
adaptive ekf
4
ekf salt
4
monitoring crucial
4

Similar Publications

Evaluating Amino Acid Profiles and Blood Gas Concentrations Between Single and Twin Merino Newborn Lambs.

Anim Sci J

September 2025

Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.

As sheep production standards progress, and animals are bred for high production in terms of the number and weight of lambs weaned per ewe, research has identified a difference in the physiology of single lambs compared to multiple born lambs. The current study aimed to report the baseline amino acid (AA) profiles and blood gas concentrations in newborn, Merino single and twin lambs. From 120 days of gestation, 50 single-bearing and 50 twin-bearing, naturally mated Merino ewes were monitored for signs of approaching parturition.

View Article and Find Full Text PDF

Biodegradation of patulin in apple juice by phosphoribosyl transferase (URA5): implications for food safety.

BMC Biotechnol

September 2025

Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, Gauteng, 2028, South Africa.

Patulin (PAT), a mycotoxin produced primarily by Penicillium expansum, poses significant health risks and frequently contaminates apples and apple-derived products, often exceeding permissible safety limits. This study investigated the potential of orotate phosphoribosyl transferase (URA5) to degrade PAT in apple juice under controlled conditions. PAT degradation was assessed at initial concentrations of 100 µg/L and 250 µg/L, with enzymatic treatment using 0.

View Article and Find Full Text PDF

Palytoxin-like compounds, including ovatoxins, are potent emerging toxins responsible for human respiratory poisonings following inhalation of contaminated marine aerosols. Periodic massive proliferations of the ovatoxin-producing organism (Ostreopsis cf. ovata) worldwide, particularly in the Mediterranean, have caused severe toxic outbreaks, drawing the attention of health authorities.

View Article and Find Full Text PDF

Urban-impacted river pollutant sources: WQI ranking and PMF analysis.

Environ Monit Assess

September 2025

School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.

A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF