98%
921
2 minutes
20
Image quality in high-resolution digital single-lens reflex (DSLR) systems is degraded by Complementary Metal-Oxide-Semiconductor (CMOS) sensor noise and optical imperfections. Sensor noise becomes pronounced under high-ISO (International Organization for Standardization) settings, while optical aberrations such as blur and chromatic fringing distort the signal. Optical and sensor-level noise are distinct and hard to separate, but prior studies suggest that improving optical fidelity can suppress or mask sensor noise. Upon this understanding, we introduce a framework that utilizes densely interpolated Point Spread Functions (PSFs) to recover high-fidelity images. The process begins by simulating Gaussian-based PSFs as pixel-wise chromatic and spatial distortions derived from real degraded images. These PSFs are then encoded into a latent space to enhance their features and used to generate refined PSFs via similarity-weighted interpolation at each target position. The interpolated PSFs are applied through Wiener filtering, followed by residual correction, to restore images with improved structural fidelity and perceptual quality. We compare our method-based on pixel-wise, physical correction, and densely interpolated PSF at pre-processing-with post-processing networks, including deformable convolutional neural networks (CNNs) that enhance image quality without modeling degradation. Evaluations on DIV2K and RealSR-V3 confirm that our strategy not only enhances structural restoration but also more effectively suppresses sensor-induced artifacts, demonstrating the benefit of explicit physical priors for perceptual fidelity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196991 | PMC |
http://dx.doi.org/10.3390/s25123773 | DOI Listing |
Neuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDFFront Digit Health
August 2025
Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.
View Article and Find Full Text PDFFront Artif Intell
August 2025
Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.
View Article and Find Full Text PDFIEEE Internet Things J
August 2025
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA.
Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications.
View Article and Find Full Text PDFFront Robot AI
August 2025
Department of Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, United States.
Multimodal perception is essential for enabling robots to understand and interact with complex environments and human users by integrating diverse sensory data, such as vision, language, and tactile information. This capability plays a crucial role in decision-making in dynamic, complex environments. This survey provides a comprehensive review of advancements in multimodal perception and its integration with decision-making in robotics from year 2004-2024.
View Article and Find Full Text PDF