Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Current research on dosimeters based on radiation-induced attenuation (RIA) primarily focused on enhancing radiation sensitivity or reducing dependencies from interference factors. However, their intrinsic sensing performance has received limited attention. This work proposed application and analysis methods for RIA-based dosimeters, validated by a low-cost apparatus using commercial fibers. Initially, a generic protocol of high-dose detection after low-dose calibration was suggested to overcome the various dependencies of RIA, enabling repetitive monitoring of near-stable radiation by simple replacement of commercial fibers. Experiments comparing three dose-loss models demonstrated that the saturation-exponential model exhibited superior accuracy, achieving absolute errors below 4 Gy within a measurable range of up to ~300 Gy. Subsequently, the system's RIA-based sensitivity was ~125.6 dB·Gy·km. The resolution and sensitivity expressed by optical power were newly defined, effectively quantifying the decline in precision and response ratio during detection. Moreover, an additional structure was introduced to extend the measurable range. Simulations and experiments under 1-MeV electron irradiation verified that adjustable ranges could be achieved through configuration of attenuation layers. In summary, these advancements provided critical guidance for component selection and operational evaluation, facilitating the commercialization and practical deployment of RIA-based dosimeters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196812PMC
http://dx.doi.org/10.3390/s25123716DOI Listing

Publication Analysis

Top Keywords

intrinsic sensing
8
sensing performance
8
based radiation-induced
8
radiation-induced attenuation
8
ria-based dosimeters
8
commercial fibers
8
measurable range
8
performance optical
4
optical fiber
4
fiber dosimeter
4

Similar Publications

Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.

View Article and Find Full Text PDF

Goal-oriented balance rehabilitation system for balance disorder.

Med Eng Phys

October 2025

Mechatronics Engineering Department, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54600, Sakarya, Turkey; Systems Engineering Department, Military Technological College, Al Matar, Muscat, 111, Muscat, Oman. Electronic address:

Balance is a critical component of daily activities and overall quality of life. This study aims to develop a cost-effective exercise system for the rehabilitation of balance disorders by combining a sensor module with target-oriented video games. The system, designed using a microcontroller-controlled sensor module and Unity game engine, features a game component that provides visual feedback and is synchronized with the platform movements.

View Article and Find Full Text PDF

Jahn-Teller Distortion Enables Enhanced Piezoelectric Energy Harvesting Properties of a Metal-Pyrazolylborate Complex.

Inorg Chem

September 2025

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.

View Article and Find Full Text PDF

AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.

View Article and Find Full Text PDF

Interface Engineering Based on Naphthyl Isomerization for High-Efficiency and Stable Perovskite Solar Cells: Theoretical Simulation and Experimental Research.

Small

September 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.

Perovskites have a large number of intrinsic defects and interface defects, which often lead to non-radiative recombination, and thus affect the efficiency of perovskite solar cells (PSCs). Introducing appropriate passivators between the perovskite layer and the transport layer for defect modification is crucial for improving the performance of PSCs. Herein, two positional isomers, 1-naphthylmethylammonium iodide (NMAI) and 2-naphthylmethylammonium iodide (NYAI) are designed.

View Article and Find Full Text PDF